博碩士論文 109622015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.220.178.207
姓名 顏宏宇(Hung-Yu Yen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以二維地震波模擬探討臺灣東北部雙重P波之觀測
(Using 2-D Waveform Modeling to Analyze the Observations of Separating First P Arrivals Beneath NE Taiwan)
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造
★ 菲律賓民都洛島西北地震地體和上部地函速度構造★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度★ 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性
★ 以雙差分定位法重新定位2017 Batangas地震序列★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析
★ 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵★ 印度尼西亞蘇拉威西島地震構造
★ 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程★ 2021南投深部地震的構造意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣位於歐亞板塊及菲律賓海板塊相互聚合的板塊邊界上,在臺灣東部主要由菲律賓海板塊朝西北隱沒至歐亞板塊之下,進而構成琉球隱沒帶。在臺灣東北部的高解析P波速度構造研究中,發現除了隱沒的菲律賓海板塊呈現高速的特性外,東北角正下方的地函楔中也存在著高速異常體,約由20公里深處延伸至80公里,且其P波波速可達約8.6 km/s。本研究利用臺灣陣列(Formosa Array)對臺灣東北部底下一起中深部地震事件(25.02°N, 121.86°E, 138 km, Mw 4.7)進行觀測分析,發現震央周圍的測站有著雙重P波的位移波形,包含一個較微弱的先行P波(P1)及緊跟在後的延遲P波(P2),而在震央距約25公里外的測站僅能觀測到單一P波波相(P)。更為特別的是,P2有著逆走時的特性──在震央西側約20公里的測站反而更早接收到P2波相,且P和P2雖振幅相近,但在波相上卻有明顯地不同。透過量測P1-P2的到時差以及震源至各測站的波線,發現大多行經地函楔高速體的波線皆有著雙重P波的觀測。本研究透過自行建立模型以進行二維有限差分模擬,嘗試找出造成雙重P波觀測的生成機制。從結果顯示,震源上方的地函楔高速體為產生P1的主因──此地震事件高傾角的震源特性,使節面周圍所輻射出較弱的能量恰好進入上方高速地函楔並且向外折射,導致震央周圍的測站皆能接收到P1波相;在另外尺度較大的速度構造研究中,顯示西北臺灣底下的歐亞岩石圈也有著較高速的特性,又因琉球隱沒帶與歐亞岩石圈之側向耦合,形成了東西方向上的側向速度變化。本研究認為,P2可能是由此邊界折射自地表的波相。透過引入此高速邊界至二維速度模型中,我們得以成功模擬出P2,包含波形特徵及逆走時的觀測。因本研究僅使用簡化後的二維速度模型進行順推模擬,對於擬合波形及觀測資料尚存少許的不吻合處,但對於欲分析的異常波形,其較明顯的特徵皆可被我們的模型所重現。因此本研究能提供一個簡單的機制來解釋本起地震事件的異常觀測波形,並且對於東北部地下構造有進一步的約束。
摘要(英) Tectonics of northeastern Taiwan are mainly dominated by the north to northwest subduction of the Philippine Sea Plate (PSP) beneath the Eurasian Plate along the Ryukyu Trench. Recent high-resolution 3-D P wave velocity structures reveal high-velocity anomalies not only in the PSP slab but also in the mantle wedge. We investigate a deep event beneath northeastern Taiwan (12 Mar. 2019) that exhibit two P arrivals by using the data from Formosa Array and attempt to figure out the causes through waveform modeling. After constructing 2-D velocity models as a process of trial and error, the pattern of the separate two P phases can be well reproduced in our synthetics. The weaker waves radiated from the nodal plane pass through the high-velocity mantle wedge just beyond the source so that the first P arrival (P1) with small amplitude can be observed around the epicenter. The second P phases (P2) are the refracted waves impinging on the nearly vertical boundary of the Eurasian lithosphere, which is ~15 km away from the source. The consistency of the reverse travel-time curve and the phase change of P2 between synthetics and observations can also support this conception. Such a simple model cannot fully mimic the observations, but we only provide a mechanism for explaining these complicated waveform effects.
關鍵字(中) ★ 異常波形
★ 震波模擬
★ 雙重P波
★ 菲律賓海板塊
★ 歐亞岩石圈
★ 臺灣東北部
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 2
1.2 雙重P波的相關研究 3
1.2.1 導波相關研究 4
1.2.2 非典型的隱沒帶地震觀測 5
1.2.3 散射體模型 6
1.2.4 導波及散射體模型的驗證 7
第二章 區域地體架構 19
2.1 板塊間的交互作用 19
2.1.1 隱沒反轉機制模型 19
2.1.2 隱沒擠入體模型 20
2.2 區域三維速度構造模型 21
2.2.1 地函楔中的高速異常體 21
2.2.2 菲律賓海板塊與歐亞岩石圈的交界 22
第三章 研究方法及資料處理 37
3.1 有限差分法震波模擬 37
3.1.1有限差分法歷史及簡介 37
3.1.2 數值方法 38
3.1.3 交錯網格有限差分法 40
3.1.4三維黏滯彈性有限差分法 41
3.1.5 程式平行化 45
3.1.6 邊界條件 46
3.1.7震源 48
3.2 波線路徑順推 50
3.3 有限差分法模型建立 51
3.3.1 三維模擬 51
3.3.2 二維模擬──初始模型選擇 51
3.3.3 二維模擬──修改初始模型 52
3.3.4 二維模擬──高斯濾波器 53
3.4 資料分析 54
3.4.1 波形資料下載 54
3.4.2 觀測波形資料預處理 54
3.4.3 雙重P波到時差測量 55
3.5 質點運動 55
第四章 研究結果 75
4.1 觀測結果 75
4.1.1 到時差測量結果及剖面觀測 75
4.1.2 質點運動及頻譜分析結果 76
4.2 模擬結果 77
4.2.1 三維有限差分模擬 77
4.2.2 二維模擬結果及敏感度測試 77
4.3 最佳模型及不規則邊界測試 80
4.4 模型平滑化的測試 80
第五章 討論 103
5.1 探討最佳解模型 103
5.2 模型的不吻合處及不確定性 104
5.2.1 不吻合處 104
5.2.2 歐亞岩石圈的不確定性 104
5.3 Q值模型的探討 105
5.4 其餘觀測比對 106
5.4.1 質點運動 106
5.4.2 頻譜分析 107
5.5 兩個震源的可能性 107
5.6 菲律賓海板塊於北台灣底下的最西側邊界 108
第六章 結論 122
參考文獻 123
參考文獻 Abers, G. (2000). Hydrated subducted crust at 100–250 km depth. Earth and Planetary Science Letters, 176(3–4), 323–330. https://doi.org/10.1016/S0012-821X(00)00007-8
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
Brush, S. G. (1980). Discovery of the Earth’s core. American Journal of Physics, 48(9), 705–724. https://doi.org/10.1119/1.12026
Chen, K. H., Kennett, B. L. N., & Furumura, T. (2013). High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665–680. https://doi.org/10.1002/jgrb.50071
Chen, M., Tromp, J., Helmberger, D., & Kanamori, H. (2007). Waveform modeling of the slab beneath Japan. Journal of Geophysical Research, 112(B2), B02305. https://doi.org/10.1029/2006JB004394
Chiu, J.-M., Isacks, B. L., & Cardwell, R. K. (1985). Propagation of high-frequency seismic waves inside the subducted lithosphere from intermediate-depth earthquakes recorded in the Vanuatu Arc. Journal of Geophysical Research, 90(B14), 12741. https://doi.org/10.1029/JB090iB14p12741
Chou, H.-C., Kuo, B.-Y., Hung, S.-H., Chiao, L.-Y., Zhao, D., & Wu, Y.-M. (2006). The Taiwan-Ryukyu subduction-collision complex: Folding of a viscoelastic slab and the double seismic zone. Journal of Geophysical Research, 111(B4), B04410. https://doi.org/10.1029/2005JB003822
Dahm, T., Krüger, F. (2014): Moment tensor inversion and moment tensor interpretation. - In: Bormann, P. (Ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2), Potsdam : Deutsches GeoForschungsZentrum GFZ, 1-37. https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.9
Doo, W.-B., Lo, C.-L., Hsu, S.-K., Tsai, C.-H., Huang, Y.-S., Wang, H.-F., et al. (2018). New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations. Journal of Asian Earth Sciences, 154, 93–100. https://doi.org/10.1016/j.jseaes.2017.12.010
Fan, J., & Zhao, D. (2021). P‐wave Tomography and Azimuthal Anisotropy of the Manila‐Taiwan‐Southern Ryukyu Region. Tectonics, 40(2). https://doi.org/10.1029/2020TC006262
Furumura, T., Kennet, B. L. N. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research, 110(B10), B10302. https://doi.org/10.1029/2004JB003486
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Geol Soc China 6:21–33
Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am. 86, 1091–1106.
Hori, S. (1990). Seismic waves guided by untransformed oceanic crust subducting into the mantle: the case of the Kanto district, central Japan. Tectonophysics, 176(3–4), 355–376. https://doi.org/10.1016/0040-1951(90)90078-M
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014a). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Kuo-Chen, H., & Lee, S.-J. (2014b). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350–6357. https://doi.org/10.1002/2014GL061115
Huang, H.-H., Wu, E.-S., Lin, C.-H., Ko, J. Y.-T., Shih, M.-H., & Koulakov, I. (2021). Unveiling Tatun volcanic plumbing structure induced by post-collisional extension of Taiwan mountain belt. Scientific Reports, 11(1), 5286. https://doi.org/10.1038/s41598-021-84763-z
Igel, H. (2016). Computational Seismology: A Practical Introduction. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717409.001.0001
Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
Ko, Y.-T., Kuo, B.-Y., Wang, K.-L., Lin, S.-C., & Hung, S.-H. (2012). The southwestern edge of the Ryukyu subduction zone: A high Q mantle wedge. Earth and Planetary Science Letters, 335–336, 145–153. https://doi.org/10.1016/j.epsl.2012.04.041
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117, B06306. https://doi.org/10.1029/2011JB009108
Lallemand, S., Font, Y., Bijwaard, H., & Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3–4), 229–253. https://doi.org/10.1016/S0040-1951(01)00071-3
Lallemand, S., Theunissen, T., Schnürle, P., Lee, C.-S., Liu, C.-S., & Font, Y. (2013). Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 594, 60–79. https://doi.org/10.1016/j.tecto.2013.03.020
Lin, C.-H., Shih, M.-H., & Lai, Y.-C. (2019). A Strong Seismic Reflector within the Mantle Wedge above the Ryukyu Subduction of Northern Taiwan. Seismological Research Letters, 91(1), 310–316. https://doi.org/10.1785/0220190174
Lin, C.-H., Shih, M.-H., & Lai, Y.-C. (2021). Mantle wedge diapirs detected by a dense seismic array in Northern Taiwan. Scientific Reports, 11(1), 1561. https://doi.org/10.1038/s41598-021-81357-7
Lin, J.-Y. (2004). Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence. Journal of Geophysical Research, 109(B12), B12402. https://doi.org/10.1029/2004JB003260
Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space, 69(1), 102. https://doi.org/10.1186/s40623-017-0687-2
Martin, S., Rietbrock, A., Haberland, C., Asch, G. (2003). Guided waves propagating in subducted oceanic crust. Journal of Geophysical Research, 108(B11), 2536. https://doi.org/10.1029/2003JB002450
Monteiller, V., Chevrot, S., Komatitsch, D., & Wang, Y. (2015). Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method. Geophysical Journal International, 202(2), 811–827. https://doi.org/10.1093/gji/ggv189
Rawlinson, N., & Sambridge, M. (2003). SEISMIC TRAVELTIME TOMOGRAPHY OF THE CRUST AND LITHOSPHERE. In Advances in Geophysics (Vol. 46, pp. 81–198). Elsevier. https://doi.org/10.1016/S0065-2687(03)46002-0
Rawlinson, N., Kool, M. de, & Sambridge, M. (2006). Seismic wavefront tracking in 3D heterogeneous media: applications with multiple data classes. Exploration Geophysics, 37(4), 322–330. https://doi.org/10.1071/EG06322
Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. GEOPHYSICS, 64(2), 516–523. https://doi.org/10.1190/1.1444558
Su, P.-L., Chen, P.-F., & Wang, C.-Y. (2019). High‐Resolution 3‐D P Wave Velocity Structures Under NE Taiwan and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 124(11), 11601–11614. https://doi.org/10.1029/2019JB018697
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
subduction and back-arc spreading near Taiwan. Memoirs
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe J (1984) Kinematics of arc-continent collision, flipping of
Suppe, J. (1984) Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6:21–33.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949. https://doi.org/10.1130/0091-7613(1996)024<0949:ECOTNT>2.3.CO;2
Teng, L. S., Lee, C. T., Tsai, Y. B., & Hsiao, L.-Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155. https://doi.org/10.1130/0091-7613(2000)28<155:SBAAMF>2.0.CO;2
Wu, F. T., Liang, W.-T., Lee, J.-C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research, 114(B7), B07404. https://doi.org/10.1029/2008JB005950
Wu, W., & Irving, J. C. E. (2018). Evidence from high frequency seismic waves for the basalt–eclogite transition in the Pacific slab under northeastern Japan. Earth and Planetary Science Letters, 496, 68–79. https://doi.org/10.1016/j.epsl.2018.05.034
Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L., & Nakamura, M. (2008). A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471–1481. https://doi.org/10.1785/0120070166
Zhang, W., & Shen, Y. (2010). Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. GEOPHYSICS, 75(4), T141–T154. https://doi.org/10.1190/1.3463431
Zhao, D. (2001). Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Physics of the Earth and Planetary Interiors, 127(1–4), 197–214. https://doi.org/10.1016/S0031-9201(01)00228-X
Zhao, D., Hasegawa, A., & Kanamori, H. (1994). Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. Journal of Geophysical Research: Solid Earth, 99(B11), 22313–22329. https://doi.org/10.1029/94JB01149
周芝吟 (2022)。以二維頻譜元素法模擬地震波經岩漿庫、地函貫入體和隱沒帶異質構造的波傳現象和合成波形:以北台灣為例。臺灣大學地質科學研究所學位論文. https://doi.org/10.6342/NTU202200409
謝銘哲 (2018)。地震波模擬於地震動評估應用案例。財團法人中興工程顧問社 防災科技研究中心,國家地震防災中心會議簡報。
指導教授 陳伯飛(Po-Fei Chen) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明