博碩士論文 109622017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.191.53.185
姓名 沈怡君(Yi-Jiun Shen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以數值模擬討論南段中央山脈正斷層發育
(Numerical Simulation on the Normal Fault Development in Southern Central Range)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣島位在菲律賓海板塊與歐亞板塊兩板塊之間,中央山脈在兩板塊擠壓的地體環境下所形成。然而,長時間處在擠壓環境的中央山脈南段部分(23.5°N以南),在過去的BATS地震目錄中可以看到相當特殊的情況,在淺部(深度小於10公里)大致上的地震機制解皆為正斷層以及走向滑移斷層解,而不是以逆斷層為主的破裂型態。因此,本研究利用數值模擬方式做三維地球動力求解,在簡化的模型設計下,探討中央山脈的地體構造如何發育,進而形成正斷層以及走向滑移斷層地震。在台灣南北造山時序的差異下,本研究區域的北方完成造山,而南方則尚未,故地層屬於較鬆軟的狀態,因此假設在此情況下中央山脈物質會向南方移動。
本研究結果中驗證物質必須有南北向的流動才得以與現況吻合,一方面造成了正斷層地震,另一方面也是恆春半島造山的材料來源,從各項參數實驗中了解,中央山脈的深部物質密度須小於西部麓山帶下部地殼與海岸山脈的密度,以及盡量小於淺部中央山脈物質的密度,且結果與前人P波波速相關研究得以相互解釋,有助於了解中央山脈的地下物質特性。綜合上述,此區域的地體複雜度包含縱向、東西向以及南北向的因素,無法僅透過二維的模型就簡單說明,必須以三維的方式進行討論。
摘要(英) Taiwan Island is located between the Philippine Sea Plate and the Eurasian Plate. However, in the BATS earthquake catalog, an interesting thing we can find is that the focal mechanisms in the southern Central Range are normal faults and strike-slip faults, but not reverse faults. Therefore, our study uses the numerical simulation method to solve the three-dimensional geodynamics. Under the simplified model design, explore how the tectonic development of the southern Central Range forms normal faults earthquakes. Due to the difference in the orogeny sequence between the north and the south of Taiwan, the northern part of our study area has completed orogeny, but the southern part not yet. So, our study assumed that the material in the Central Range will flow to the south.
The results verified that the material must have a north-south flow to be consistent with the current situation. On the one hand, the normal fault earthquake is caused, and on the other hand, it is also the source of the orogenic material of the Hengchun Peninsula. Other results show the density of ductile Central Range must be lower than the density of the lower crust in the Western Foothills and Coastal Range, as well as the density of brittle part as much as possible. To sum up the above, the complexity of the southern Central Range includes vertical, east-west, and north-south factors, which cannot be simply explained through a two-dimensional model, and must be discussed in a three-dimensional way.
關鍵字(中) ★ 南段中央山脈
★ 正斷層
★ 三維數值模擬
★ 恆春半島造山
關鍵字(英)
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第1章、 緒論 1
1.1. 研究動機與目的 1
1.2. 前人研究 3
1.2.1 地體架構 3
1.2.2 地質分區 5
1.2.3 地質概況 6
1.2.4 地震波觀測 9
1.2.5 重力觀測 21
1.2.6 GPS與水準測量 23
1.2.7 應力場反演 24
1.3. 本文架構 32
第2章、 研究方法-數值模擬程式. 33
2.1. 程式 33
2.1.1 有限元素法 34
2.1.2 運動方程式 35
2.1.3 黏彈塑性變形和物性方程式 36
2.1.4 重新建構網格 41
2.1.5 黏度 42
2.2. 各實驗共同參數 43
第3章、 模型設計 44
3.1. 實驗幾何設定與邊界條件 44
3.1.1 軟性區域 45
3.2. 參數設定 46
3.2.1 密度實驗 46
3.2.2 黏度實驗 48
3.2.3 摩擦角實驗 49
第4章、 結果 50
4.1. 密度實驗 55
4.1.1 密度實驗1 55
4.1.2 密度實驗2 72
4.1.3 密度實驗3 77
4.1.4 密度實驗小結 82
4.2. 黏度實驗 83
4.2.1 黏度實驗1 83
4.2.2 黏度實驗2 90
4.2.3 黏度實驗3 97
4.2.4 黏度實驗小結 105
4.3. 摩擦角實驗 105
4.4. 軟性區域實驗 114
4.4.1 軟性區域—密度實驗 114
4.4.2 軟性區域—黏度實驗 127
4.4.3 軟性區域—摩擦角實驗 141
4.4.4 軟性區域實驗小結 150
第5章、 討論 152
5.1. 軟性區域 152
5.1.1 軟性區域存在與否 152
5.1.2 軟性區域的地質意義 165
5.2. 實驗參數 165
5.2.1 實驗參數對模擬結果的影響 165
5.2.2 實驗參數的地質意義 176
5.3. 正斷層的成因 177
5.4. 模型限制與未來工作 178
5.4.1 模型限制 178
5.4.2 未來工作 179
第6章、 結論 181
參考文獻 182
附錄 I
參考文獻 三浦唯宣(1933) 。臺灣地誌の研究。臺灣地學紀,10號,8-10頁。(日文)
阮維周(1954) 。臺灣新誌地形篇。台北市,中華文化出版委員會,45頁。
陳文山. (2016)。 臺灣地質概論。台北市,中華民國地質學會。
陳文山、王源. (1996)。臺灣東部海岸山脈地質。經濟部中央地質調查所,臺灣地質之七。
陳文山,黃奕彰,劉丞浩,馮瀚亭,鍾孫霖,李元希 (2014)。大南澳變質雜岩的鈾鉛定年研究-探討中生代臺灣地 區歐亞板塊東緣的造山運動史。 中華民國地質學會與中華民國地球物理學會 103 年年會暨學術研討會論文摘要集,354。
薩宜光(2004),南部中央山脈之地震活動性探討:國立成功大學地球科學系碩士論文。
Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth′s crust. Bulletin of the seismological Society of America, 95(6), 2081-2092.
Burchfiel, B. C., & Royden, L. H. (1985). North-south extension within the convergent Himalayan region. Geology, 13(10), 679-682.
Chemenda, A. I., Yang, R. K., Stephan, J. F., Konstantinovskaya, E. A., & Ivanov, G. M. (2001). New results from physical modelling of arc–continent collision in Taiwan: evolutionary model. Tectonophysics, 333(1-2), 159-178.
Chen, C.-H., Lee, C. Y., T. C. Huang, & Ting, J. S. (1997). Radiometric ages and petrological and geochemical aspects of some late Cretaceous and Paleogene volcanic rocks beneath the northern offshore of Taiwan. Petrol. Geol. Taiwan, 31, 61-88.
Chen, W.-S., Huang, Y.-C., Liu, C.-H., Feng, H.-T., Chung, S.-L., & Lee, Y.-H. (2016). U-Pb Zircon Geochronology Constraints on the Ages of the Tananao Schist Belt and Timing of Orogenic Events in Taiwan: Implications for a New Tectonic Evolution of the South China Block During the Mesozoic. Tectonophysics, 686, 68-81.
Chen, W.-S., Yang, H.-C., Wang, X., & Huang, H. (2002). Tectonic setting and exhumation history of the Pingtan–Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China. Journal of Asian Earth Sciences, 20(7), 829-840.
Chen, W. S., & Y., W. (1988). The Plio-Pleistocene basin development in the Coastal Range of Taiwan. Acta Geol. Taiwanica, 26, 37-56.
Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8).
Choi, E., Tan, E., Lavier, L. L., & Calo, V. M. (2013). DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation. Journal of Geophysical Research: Solid Earth, 118(5), 2429-2444.
Cundall, P., & Board, M. (1988). A MICROCOMPUTER PROGRAM FOR MODELLING LARGE-STRAIN PLASTICITY PROBLEMS. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN GEOMECHANICS. INNSBRUCK, AUSTRIA, 1-3.
Doo, W.-B., Kuo-Chen, H., Brown, D., Lo, C.-L., Hsu, S.-K., & Huang, Y.-S. (2016). Serpentinization of the fore-arc mantle along the Taiwan arc-continent collision of the northern Manila subduction zone inferred from gravity modeling. Tectonophysics, 691(22), 282-289.
Hsieh, H.-H., & Yen, H.-Y. (2016). Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data. Journal of Asian Earth Sciences, 124, 247–259.
Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M. (2012). The potential for a great earthquake along the southernmost Ryukyu subduction zone. 39(14).
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 39(15), 177-191.
Jahn, B. M., Chen, P. Y., & Yen, T. P. (1976). Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin, 87(5), 763-776.
Jahn, B.-m., & Cuvellier, H. (1994). Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment. Chemical Geology, 115(1-2), 125-151.
Jahn, B. M., Martineau, F., & Cornichet, J. (1984). Chronological significances of Sr isotopic compositions in the crystalline limestones of the central range, Taiwan.
Johnson, K. M., & Segall, P. (2004). Imaging the ramp–décollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonophysics, 378(1-2), 123-139.
Kao, H., Liu, Y. H., Liang, W. T., & Chen, W. P. (2002). Source parameters of regional earthquakes in Taiwan: 1999-2000 including the Chi-Chi earthquake sequence. Terrestrial Atmospheric and Oceanic Sciences, 13(3), 279-298.
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204-220.
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012a). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6).
Kuo‐Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., & Huang, B. S. (2012b). Seismic evidence for the α‐β quartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22).
Lan, C. Y., Jahn, B. M., Mertzman, S. A., & Wu, T. W. (1996). Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences, 14(1-2), 11-28.
Li, T., Chen, J., Thompson Jobe, J. A., Burbank, D. W., Cheng, X., Xu, J., ... & Zhang, P. (2018). Active bending‐moment faulting: Geomorphic expression, controlling conditions, accommodation of fold deformation. Tectonics, 37(8), 2278-2306.
Li, X.-H., Li, Z.-X., Li, W.-X., Liu, Y., Yuan, C., Wei, G., & Qi, C. (2007). U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2), 186-204.
Lin, C. H. (2002). Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova, 14(4), 281-287.
Ma, K.-F., Wang, J.-H., & Zhao, D. (1996). Three-Dimensional Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan. Journal of Physics of the Earth, 44(2), 85-105.
Malavieille, J., & Chemenda, A. (1997). Impact of initial geodynamic setting on structure, ophiolite emplacement and tectonic evolution of collisional belts. Ofioliti, 22(1), 3-13.
Rau, R.-J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3-4), 517-532.
Roecker, S. W., Iyer, H. M., & Hirahara, K. (1993). Tomography in zones of collision: Practical considerations and examples. Seismic Tomography Theory and Practice, 534-611.
Roecker, S. W., Yeh, Y. H., & Tsai, Y. B. (1987). Three-dimensional P and S wave velocity structures beneath Taiwan: Deep structure beneath an arc-continent collision. Journal of Geophysical Research: Solid Earth, 92(B10), 10547-10570.
Shih, R. C., Lin, C. H., Lai, H. L., Yeh, Y. H., Huang, B. S., & Yen, H. Y. (1998). Preliminary Crustal Structures Across Central Taiwan From Modeling of the Onshore-Offshore Wide-Angle Seismic Data. Terrestrial, Atmospheric and Oceanic Sciences, 9(3), 317 - 328.
Si, H., & TetGen, A. (2006). A Quality Tetrahedral Mesh Generatorand Three-Dimensional DelaunayTriangulator. WeierstrassInstitute for Applied Analysisand Stochastic. Berlin, Germany.
Teng, L. S., Lee, C. T., Peng, C. H., Chen, W. F., & Chu, C. J. (2001). Origin and geological evolution of the Taipei basin, northern Taiwan. Western Pacific Earth Sciences, 1(2), 115-142.
Uyeda, S., & Miyashiro, A. (1974). Plate tectonics and the Japanese Islands: a synthesis. Geological Society of America Bulletin, 85(7), 1159-1170.
Wang, Z., Zhao, D., Wang, J., & Kao, H. (2006). Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophysical Research Letters, 33(18).
Weber-Diefenbach, K., Cheng, Y. M., & Schmidt, K. (1980). The greenstones of the Tananao schist belt, Central Range, Taiwan. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 160, 258-285.
Wong, J., Sun, M., Xing, G., Li, X.-h., Zhao, G., Wong, K., . . . Wu, F. (2009). Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125–100 Ma and its tectonic significance for South China. Lithos, 112(3-4), 289-305.
Wu, F. T., Liang, W. T., Lee, J. C., & Benz, H. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. 114(B7).
Wu, W. N., Kao, H., Hsu, S. K., Lo, C. L., & Chen, H. W. (2010). Spatial variation of the crustal stress field along the Ryukyu‐Taiwan‐Luzon convergent boundary. Journal of Geophysical Research: Solid Earth, 115(B11).
Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K., & Avouac, J.-P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8).
Wu, Y.-M., Shyu, J. B. H., Chang, C.-H., Zhao, L., Nakamura, M., & Hsu, S.-K. (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2).
Yang, Y. R., & Johnson, K. M. (2020). Crustal stress state in Taiwan: Moderately strong crust supporting gravitational and flexural loading. Journal of Geophysical Research: Solid Earth, 125(11), e2020JB019530.
Yeh, Y. H., Shih, R. C., Lin, C. H., Liu, C. C., Yen, H. Y., Huang, B. S., . . . Wu, F. T. (1998). Onshore/ offshore wide-angle deep seismic profiling in Taiwan. Terres. Atmos. Ocean. Sci.
Yen, H.-Y., Yeh, Y.-H., Lin, C.-H., Yu, G.-K., & Tsai, Y.-B. (1990). Free-Air Gravity Map of Taiwan and Its Applications. Terrestrial, Atmospheric and Oceanic Sciences 1(2), 143-155.
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yui, T. F. (1990). Tectonic evolution of the Tananao schist complex of Taiwan. Tectonics of circum-Pacific continental margins, 193-209.
Yui, T. F., & Lan, C. Y. (1991). Isotopic compositions of Tananao marble in the Tungao area, northeastern Taiwan: a chronological consideration. Special Publication of the Central Geological Survey, 5, 161-172.
指導教授 郭陳澔 譚諤 郭俊翔 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明