博碩士論文 109624007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.207.133.13
姓名 莊承家(Cheng-Jia Jhuang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 臺灣西南部車瓜林斷層之斷層岩石及變形機制
(Fault rocks and deformation mechanism of the Chegualin active fault in SW Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 車瓜林斷層於2021年被地調所歸類為第一類活動斷層,斷層跡主要分布在厚層泥岩所組成的古亭坑層中;多種大地測量皆顯示車瓜林斷層有持續性的潛移活動,對斷層跡通過處的建築產生結構變形及破壞。泥岩區容易受沖刷侵蝕影響使地形快速改變,斷層跡的分布無法利用地形明顯觀察,而過往的野外調查發現斷層作用可使泥岩產狀發生改變並出露於露頭。本研究基於陳新翰(2021)對車瓜林斷層所進行中視尺度觀察的發現,¬斷層岩內具有數公厘到一、兩公分寬的應變集中產物的黑色條帶,在其研究的斷層露頭及斷層岩心中採取圍岩及斷層岩樣本並利用微組構觀察、礦物組成分析及同步X光繞射,探討車瓜林斷層的變形機制。
微組構觀察顯示斷層岩內具有S-C構造;黑色條帶內部礦物顆粒產生破碎、變形,片狀礦物及礦物顆粒長軸沿黑色條帶方向產生順向排列,黏土礦物沿S、C、C’面產生順向性排列,石英粒徑在黑色條帶中產生粒徑削減,顯示黑色條帶為岩體中的變形帶,主要透過摩擦滑動(fricitional sliding)並伴隨碎裂作用(cataclasis)產生,因此黑色條帶的寬度及密度可作為斷層岩變形程度的指標。
全岩礦物組成分析顯示,在變形程度較高的斷層岩中黏土礦物的含量也相對較高,而伊萊石結晶度反倒較差。黏土礦物組成分析顯示斷層帶內有岩水反應發生;圍岩及斷層岩的EI值變化不明顯,顯示斷層帶內並沒有透過礦物相變所產生的伊萊石;而伊萊石在全岩中的結晶度降低表示伊萊石受到顆粒細化影響使結構產生缺陷。
同步X光分析指出黑色條帶內有非晶質材料的存在,根據微組構及前人對非晶質材料形成機制的研究,本研究認為黑色條帶中的非晶質材料在斷層作用下透過碎屑細化產生,而黏土礦物在細化轉變為非晶質材料時脫水,使斷層帶內產生流體並引發岩水反應,而岩水反應可以將石英溶解消耗使黏土礦物相對含量增加,也能與非晶質材料反應生成膨潤石。
斷層岩中的S-C構造發育及黏土礦物含量相對增加都會造成岩體摩擦係數降低,因此斷層作用的變形主要集中在黑色破碎泥岩出現的位置。而非晶質材料在斷層帶的存在顯示斷層作用引發的非晶質化正持續發生,可能與大地測量所揭示車瓜林斷層的潛移活動有關。
摘要(英) The Chegualin fault (CGLF) has been acknowledged as an active fault by the Central Geological Survey since 2021. The fault trace of CGLF mainly appeared in the Gutingkeng formation, which is mainly composed of thickly bedded mudstone. Onsite geodetic measurements suggested that the CGFL has continuous creeping movement. The movement caused damage to the infrastructures straddling the fault trace. But evidence of the fault trace like fault scarps are rarely preserved due to the rapid change of the topography caused by surface erosion in the mudstone region. Through field investigation in the areas which show high surface displacement velocity gradients revealed by geodetic monitoring. Previous research found out that the occurrence of the mudstone in the area was different from others and concluded that the occurrence difference was caused by the faulting of CGLF. Therefore, this research is based on the finding derived from the mesoscale observations by Chen (2021) that black bands with a thickness ranging from several mm to 1 or 2 cm , which is a product of strain localization, appear in argillaceous Chegualin fault rocks. Wall rock and fault rock samples were collected from the same fault outcrop and rock core as Chen (2021). Microscopic observations, mineral assemblage analysis and synchrotron XRD on these samples were performed to obtain understanding of the deformation mechanism of the CGLF.
The microscopic observations show that S-C fabric occur in fault rocks and mineral grains are fractured, deformed and forming preferred orientation in the black bands. Within the black bands, clay minerals alignment along S, C and C’ shear surface and the grain size reduction of quartz are observed. These evidence suggests that the black bands are mainly formed by frictional sliding accompanied by cataclasis and serve as deformation bands within the rocks. The density of black bands within the fault rocks can indicate how severe they were deformed.
The whole rock mineral assemblage analysis indicates that the content of clay minerals increase and the crystallinity of illite decreases with the increase of deformation intensity of the rock. The clay mineral assemblage analysis indicates that the fluid-rock interaction occurred within the fault zone. Comparing the EI (Esquevin-indices) of illite in between wall rocks and black fault rocks, we inferred that the smectite-illite transition did not occur within the fault zone. Therefore the decrease of illite crystallinity may result from the generation of defects in the lattices of illite during grain size reduction.
The synchrotron XRD analysis indicates that black bands contain amorphous materials. Based on the result of the aforementioned observations and the previous research about the formation of amorphous materials, we interpreted that the amorphous materials in the black bands were formed through comminution of clasts during the faulting. The fluid-rock interaction occurs since the dehydration of clay minerals during comminution. The grinded minerals rich in mobile elements are dissolved and consumed which let the clay minerals preserved and increase relatively, also the fluid can react with amorphous materials forming smectite.
The forming of the S-C fabric and the increasing content of the clay minerals will weaken the rock strength by reducing the frictional coefficient are documented by experiment test. Therefore we inferred that the deformation caused by the faulting is accommodated by the fault zone of CGLF but mainly localized in the position where black fractured mudstone distributed, forming distributed deformation. The presence of amorphous materials in the fault zone suggests the ongoing amorphization caused by the recent faulting of the CGLF, implicated that the forming of amorphous materials may be related to the creeping movement of the CGLF.
關鍵字(中) ★ 車瓜林斷層
★ 微組構
★ 礦物組成
★ 非晶質材料
★ 變形機制
關鍵字(英) ★ Chegualin fault
★ Microstructures
★ Mineral assemblage
★ Amorphous materials
★ Deformation mechanism
論文目次 中文摘要 I
Abstract III
誌謝 VI
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 1
第二章 研究區域概述 4
2-1 地質背景 4
2-2 地形 5
2-3 地層 5
2-3-1 古亭坑層 5
2-3-2 崎頂層 5
2-4 斷層 6
2-4-1 車瓜林斷層 6
2-4-2 古亭坑斷層 7
2-4-3 龍船斷層 7
2-4-4 鼓山斷層 7
2-4-5 旗山斷層 8
第三章 前人文獻回顧 15
3-1 斷層帶組成 15
3-2 變形機制 18
3-3 斷層帶礦物組成 22
第四章 研究方法 24
4-1 樣本採集 24
4-1-1 斷層露頭樣本採樣 24
4-1-2 斷層岩心採樣 29
4-2 微組構觀察 32
4-2-1 樣本製備 32
4-2-2 偏光顯微鏡觀察 32
4-2-3 掃描式電子顯微鏡觀察 32
4-3 礦物組成分析 35
4-3-1 全岩X光粉末繞射 35
4-3-2 黏土礦物X光粉末繞射 38
4-3-3 同步X光繞射分析 41
第五章 研究結果 42
5-1 偏光顯微鏡觀察 42
5-2 掃描式電子顯微鏡觀察 49
5-2-1 淺灰色泥岩 49
5-2-2 黃棕色破碎泥岩 49
5-2-3 黑色破碎泥岩 50
5-2-4 灰色泥岩 51
5-3 X光繞射結果 61
5-3-1 全岩礦物組成及相對含量 61
5-3-2 黏土礦物組成及相對含量 65
5-3-3 伊萊石結晶度與化學指標 69
5-3-4 同步X光繞射結果 71
第六章 討論 73
6-1 黑色條帶的變形機制 73
6-2 斷層岩的礦物組成變化 74
6-3 車瓜林斷層帶的變形機制與隱示 75
第七章 結論與建議 77
參考文獻 79
附錄(一) 樣本照片 85
附錄(二) 岩石薄片照片 89
附錄(三) X光繞射相關參數 91
參考文獻 Biscaye, P. E., 1965, Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans: Geological Society of American Bulletin, v. 76, p. 803–832.
Casciello, E., Pappone, G., and Zuppetta, A., 2002, Structural features of a shear-zone developed in southern portion of the Scorciabuoi fault (southern Apennines): Bollettino della Società Geologica Italiana, v. 1(2), p. 659-667.
Choi, J-H., Edwards, P., Ko, K., and Kim, Y-S., 2016, Definition and classification of fault damage zones: A review and a new methodological approach: Earth-Science Reviews, v. 152, p. 70-87.
Daigremont, M. J., 2014, Influence de la composition chimique du sol sur la culture des plantes alpines: Bulletin de la Société Botanique de France, v. 59(6), p. 469-474.
Davis, G. H., Reynolds, S. J. and Kluth, C. F., 2016, Structural geology of rocks and regions: John Wiley & Sons.
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and Shimamoto, T., 2006, Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes: Science, v. 311, p. 647-649.
Di Toro, G., and Pennacchioni, G., 2004, Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps): Journal of Structural Geology, v. 26(10), p. 1783-1801.
Fossen, H., 2016, Structural Geology: Cambridge University press.
Grathoff, G. H. and Moore, D. M., 1996, Illite Polytype Quantification Using Wildfire© Calculated X-Ray Diffraction Patterns: Clays and Clay Minerals, v. 44, p. 835–842.
Gingele, F. X., 1996, Holocene climatic optimum in Southwest Africa-evidence from clay mineral record: Palaeogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 122, p. 77-87.
Gingele, F. X., Deckker, P. D., Hillenbrand, C. D., 2001, Clay mineral distribution in surface sediments: Marine Geology, v. 179, p. 135-146.
Harris, R. A., 2017, Large earthquakes and creeping faults: Reviews of Geophysics, v. 55(1), p. 169-198.
Hu, J-C., Cheng, L-W., Chen, H-Y., Wu, Y-M., Lee, J-C., Chen, Y-G., Lin, K-C., Rau, R-J., Kuochen, H., Chen, H-H., Yu, S-B., and Angelier, J., 2007, Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan: Geophysical Journal International, v. 169(2), p. 667-674.
Ikari, M. J., and Saffer, D. M., 2012, Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism: Marine Geology, v. 295-298, p. 1-13.
Kübler, B., 1967, La cristallinité de l’illite et les zones tout á fait supécieures du mètamorphisme: Étages Tectoniques. Collogue de Neuchâtel 1996, p. 105–121.
Knipe, R. J., 1989, Deformation mechanisms – recognition from natural tectonites: Journal of Structural Geology, v. 11, p. 127-146.
Kuo, L-W., Song, S-R., Yeh, E-C., Chen, H-F., and Si, J-L., 2012, Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism: Journal of Asian Earth Sciences, v. 59, p. 208-218.
Lee, J-C., Chu, H-T., Angelier, J., Hu, J-C., Chen, H-Y., and Yu, S.-B., 2006, Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003,Mw= 6.5, Chengkung earthquake in eastern Taiwan: Journal of Geophysical Research: Solid Earth, v. 111(B2), p. n/a-n/a.
Liu, Y., Wu, K., Wang, X., Liu, B., Guo, J., and Du, Y., 2017, Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin: Journal of Structural Geology, v. 105, p. 1-17.
Pathier E., B. Fruneau, M-P. Doin, Y-T. Liao, J-C. Hu, Champenoi, 2014, What are the tectonic structures accommodating the present-day tectonic deforma tion in South-Western Taiwan? A new interpretation from ALOS-1 InSAR and GPS interseismic measure ments. Geodynamics and Environment in East-Asia: 7th France-Taiwan Earth Sciences Symposium. 12-15 novembre 2014, Hualien, Taiwan.
Passchie, C. W., Trouw, R. A. J., 2005, Microtectonics: Springer.
Pec, M., Stünitz, H., and Heilbronner, R., 2012, Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures: Journal of Structural Geology, v. 38, p. 200-221.
Pickersgill, A. E., Osinski, G. R., and Flemming, R. L., 2015, Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada: Meteoritics & Planetary Science, v. 50(9), p. 1546-1561.
Rao, G., Lin, A., Yan, B., Jia, D., Wu, X., and Ren, Z., 2011, Co-seismic Riedel shear structures produced by the 2010 Mw 6.9 Yushu earthquake, central Tibetan Plateau, China: Tectonophysics, v. 507(1-4), p. 86-94.
Rutter, E. H., Maddock, R. H., Hall, S. H., and White, S. H., 1986, Comparative Microstructures of Natural and Experimentally Fault Gouges: pure and applied geophysics, v. 124, p. 3-30.
Suppe, J., 1981, Mechanics Of Mountain-Building And Metamorphism In Taiwan: Memoir of the Geological Society of China, v. 4, p. 67-89.
Schleicher, A. M., van der Pluijm, B. A., and Warr, L. N., 2010, Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California: Geology, v. 38(7), p. 667-670.
Schleicher, A. M., Warr, L. N., and van der Pluijm, B. A., 2008, On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California): Contributions to Mineralogy and Petrology, v. 157(2), p. 173-187.
Sibson, R. H., 1975, Generation of Pseudotachylyte by Ancient Seismic Faulting: Geophysical Journal International, v. 43(3), p. 775-794.
Sibson, R. H., 1977, Fault rocks and fault mechanisms: Journal of the Geological Society, v. 133(3), p. 191-213.
Tomita, K., H. Yamane, and M. Kawano, 1993, Synthesis of Smectite from Volcanic Glass at Low Temperature: Clays Clay Miner, v. 41, p. 655-661.
Volpe, G., Pozzi, G., and Collettini, C., 2022, Y-B-P-R or S-C-C′? Suggestion for the nomenclature of experimental brittle fault fabric in phyllosilicate-granular mixtures: Journal of Structural Geology, v. 165.
Wheeler, J., 1992, Importance of pressure solution and coble creep in the deformation of polymineralic rocks: Journal of Geophysical Research, v. 97(B4).
Wu, W-J., Kuo, L-W., Ku, C-S., Chiang, C-Y., Sheu, H-S., Aprilniadi, T. D., and Dong, J-J., 2020, Mixed‐Mode Formation of Amorphous Materials in the Creeping Zone of the Chihshang Fault, Taiwan, and Implications for Deformation Style: Journal of Geophysical Research: Solid Earth, v. 125(6).
Yuan, R-M., Zhang, B-L., Xu, X-W., Lin, C-Y., and Han, Z-J., 2015, Microstructural and mineral analysis on the fault gouge in the coseismic shear zone of the 2008 M w 7.9 Wenchuan earthquake: International Journal of Earth Sciences, v. 104(5), p. 1425-1437.
Yund, R. A., Blanpied, M. L., Tullis, T. E., and Weeks, J. D., 1990, Amorphous material in high strain experimental fault gouges: Journal of Geophysical Research, v. 95(B10).

何春蓀,1986,台灣地質概論,台灣地質圖幅說明書(第二版),經濟部中央地質調查所。
衣德成,2004,車籠埔斷層帶組構特性與膨潤石-伊利石礦物相轉變之研究: 成功大學地球科學研究所碩士論文。
林啟文,2013,五萬分之一台灣地質圖說明書-旗山圖幅,經濟部中央地質調查所。
林啟文、游鎮源、洪國騰、周禀珊,2012, 台灣南部台南-高雄泥岩區的地質構造研究,經濟部中央地質調查所彙刊,v. 25,p.143-174。
張李群,2014,以大地測量資料進行龍船斷層與旗山斷層行為分析之研究, 成功大學測量及空間資訊學系學位論文。
許旆華,2013,台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義,中央大學地球科學系碩士論文。
陳新翰,2021,台灣西南部泥岩車瓜林斷層之岩石特徵與隱示,中央大學應用地質研究所碩士論文。
景國恩,2016,台灣及鄰近地區地體動力學研究 II (GOTTA II) 探討台灣西南部,菲律賓中部與印度東北部主要都會區之震間期地表變形特性及其他地震潛能。
黃家俊,2015,臺灣南部龍船斷層北段泥岩與斷層泥之電子顯微及 X 光極圖繞射研究,成功大學地球科學系學位論文。
趙家賢,2019,以2015至2018年大地測量資料分析車瓜林斷層地表變形及橫跨斷層之高架橋結構位移,成功大學測量及空間資訊學系學位論文。
趙荃敏,2016,利用大地測量及PSInSAR技術探討鳳山斷層之運動特性,成功大學地球科學系碩士在職專班學位論文。
劉彥求、林啟文,2021,附錄三 車瓜林斷層,經濟部中央地質調查所彙刊,v. 34,p. 34-40。
盧崇賓,2004,地震斷層作用後的流體滲透作用:檢視車籠埔斷層南投井斷層岩之化學及礦物組成,中央大學應用地質研究所碩士論文。
藺于鈞,2019,台灣西南部中寮隧道北端旗山與龍船斷層帶構造特性研究,中央大學應用地質研究所碩士論文。
指導教授 黃文正 郭力維(Wen-Jeng Huang Li-Wei Kuo) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明