博碩士論文 109624611 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.138.116.20
姓名 吳氏馬林(NGO THI MY LINH)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 地下水對於支持生態系統和確保人類面對重大與不可預測的氣候變遷的調適非常重要,尤其是當地面水系統因人口快速膨脹和氣候變遷而變得無法永續供給時。因此,地下水成為彈性與調適水資源利用的重要標的。然而,國際上目前針對水資源有效管理的研究相對較少,尤其在探討氣候變遷對區域性地面水和地下水聯合運用的衝擊面向上。因此,本研究應用耦合SWAT-MODFLOW數值模式,其中包括土壤水評估工具(SWAT)和三維有限差分地下水流模式(MODFLOW-NWT),以估算河川流量、地下水補注和濁水溪沖積扇的地面水與地下水交換量;之後依據補注區的空間分佈與面積比例,採用未來氣候變遷情境探討其對地下水補注的影響。本研究採用TCCIP提供的 5公里的氣候變遷情境空間解析度,共100年具有該流域特徵的未來氣候條件資料,進行相關模擬與分析。模式於河川流量和地下水位率定與驗證結果相當好,顯示模式可描述觀測資料而具有相當可靠度。本研究分別使用Nash–Sutcliffe模型效率係數、 R2、偏差百分比、均方根誤差和平均絕對誤差等方法,量化模式率定與驗證結果。結果顯示,濁水溪流量在SWAT模式的率定和驗證的 NSE 分別為 0.920 和 0.846;北港溪的 NSE 值分別為 0.549 和 0.548。高相關性(NSE = 0.98)和較小誤差(3 m)的地下水位率定結果顯示,利用 SWAT 模式提供的地下水補注量與研究區的地下水流模式結果相當,驗證了耦合SWAT-MODFLOW的適用性。而氣候變遷於對地下水補注時空變異評估中,採用2005-2100年基期與四種二氧化碳排放濃度路徑(RCP)情境做模擬。研究結果顯示,地下水補注區主要在扇頂區,與文獻中劃定的地下水補注地質敏感區相似。而在乾旱年份,河川對淺層含水層的補注率低於地下水向河川的出流量;此外,氣候變遷影響有明顯集中在某幾年的現象。本研究採用排名最佳的GCM (MIROC5)進行氣候變遷對地下水補注衝擊的評估。結果顯示,研究區2020至2100年,氣候變遷在不同RCP中對地下水補注的最大和最小影響率分別為RCP2.6 (66.36%,-41.92%)、RCP4.5 (51.86%,-39.48%)、RCP6.0 (56.11%,-40.13%),或極端氣候 RCP8.5 (48.93%, -39.85%)。結果顯示,即使地下水補注率主要受到地質和土壤特性影響,氣候變遷情境仍然對地下水補注產生顯著影響。本研究建立耦合SWAT-MODFLOW數值模式,並成功應用於現地的模擬,該模式可作為未來有效與可行的水資源管理工具,協助解決日漸枯竭的地面水和地下水資源。研究成果將有助於決策者和利益相關者,制定永續的水資源政策。
摘要(英) Groundwater is important for supporting ecosystems and assuring human resilience to significant and unpredictable climatic change, especially as surface water systems become more unsustainable due to fast population expansion and climate change. Therefore, groundwater use has become a flexible and adaptive feature for usage demands. However, there are currently fewer studies evaluating the effective management of water resources to be aware of the possible impact of climate change on the combination between the land surface and subsurface in local areas. The objectives of this study were to apply the coupled SWAT-MODFLOW models, which include the Soil Water Assessment Tool (SWAT) and Modular Three-Dimensional Finite-Difference Groundwater Flow (MODFLOW-NWT), to estimate streamflow discharge, groundwater recharge, and water exchange between surface water and groundwater in the Choushui River Alluvial Fan, Taiwan. For further comprehensive strategies, the research assessed the distribution and proportion of recharge areas and the impact of future climate change scenarios influence on groundwater recharge. The finest practical spatiotemporal resolutions of five kilometres over 100 years were selected to accommodate the future climatic conditions of catchment features provided by TCCIP. A strong association exists between simulation and actual observations, as shown by the input′s calibration and verification of the output parameters (streamflow and groundwater level) results. Confidence in the calibrated model was enhanced by validation through generally good statistical performance for the temporal pattern of streamflow and groundwater level, with the Nash–Sutcliffe model efficiency coefficients, R2, percent bias, root mean squared error, and mean absolute error, respectively, which helps achieve a reliable simulation of the watershed response. The results showed that the calibrated and validated SWAT model in the Choushui river were 0.920 and 0.846, respectively, for NSE. For the case of the Pei-Kang river, the NSE values for calibration and validation were 0.549 and 0.548, respectively. Computing the groundwater head of the high correlation (NSE = 0.98) and small error (3 m) revealed that the groundwater recharge from the SWAT model utilized is consistent with the hydrogeological model in the study area and provided the background for coupled SWAT-MODFLOW. The spatiotemporal variability of groundwater recharge for 2005-2100 was estimated under the baseline and four representative concentration pathways (RCPs) scenarios. The findings showed that recharge mainly occurs in the proximal fan area, catching up with some high potential recharge locations with previously delineated sensitive areas for groundwater recharge in literature. The results also showed that during the dry years, the recharge rate from the streams to the shallow aquifer was lower than the groundwater portion discharge to the streams. Besides, the climate change signal predominates the annual variability, resulting in a more pronounced pattern of greater recharge concentrated in a few years. This study expressed the procedure for assessing the impact of climate change on groundwater recharge based on the top one ranking (MIROC5) projection of the GCMs. The maximum and minimum impact rates of climate change on groundwater recharge in the study area from the 2020s to the 2100s were RCP2.6 (66.36%, -41.92%), RCP4.5 (51.86%, -39.48%), RCP6.0 (56.11%, -40.13%), or extreme climate RCP8.5 (48.93%, -39.85%), respectively. The result suggests that even when groundwater recharge lies in geology and soil properties, the effects of climate change still substantially influence it. The well-tested coupled model would be a valuable tool for evaluating a wide variety of realistic scenarios in order to determine the most efficient and workable water resource management plans for replenishing the critically depleted surface water and groundwater supplies. These findings help decision-makers and stakeholders devise sustainable water resource strategies.
關鍵字(中) ★ 水文模型
★ 氣候變遷衝擊
★ 地面水
★ 地下水補注
★ SWAT-MODFLOW
關鍵字(英) ★ Hydrological modeling
★ Climate change impact
★ Surface water
★ Groundwater recharge
★ SWAT-MODFLOW
論文目次 ABSTRACT i
摘要 iii
ACKNOWLEDGEMENT v
LIST OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF ABBREVIATIONS xiii
LIST OF NOTATIONS xiv
CHAPTER 1. INTRODUCTION 1
1.1. BACKGROUND 1
1.2. MOTIVATIONS AND OBJECTIVES 7
1.3. WORKFLOW OF THE STUDY 9
CHAPTER 2. MATERIALS AND METHODS 12
2.1. STUDY AREA 12
2.1.1. Topography 13
2.1.2. Climate 14
2.1.3. Hydrology and hydrogeological characteristics 14
2.2. METHODOLOGY 19
2.2.1. Hydrologic framework 19
2.2.2. Methodology 20
2.2.3. Datasets 35
2.2.4. SWAT-MODFLOW coupling 48
2.2.5. Model calibration 50
2.2.6. Climate change scenarios 54
CHAPTER 3. RESULTS AND DISCUSSION 58
3.1. PARAMETERS SENSITIVITY OF SWAT 58
3.2. TRANSIENT SWAT MODEL PERFORMANCE 60
3.3. MODFLOW TRANSIENT MODEL PERFORMANCE 66
3.4. PERFORMANCE OF COUPLED SWAT-MODFLOW 73
3.5. GROUNDWATER RECHARGE SCENARIOS SIMULATION 75
CHAPTER 4. CONCLUSIONS AND SUGGESTIONS 92
4.1. CONCLUSIONS 92
4.2. SUGGESTIONS 95
REFERENCES 96

參考文獻 Abbaspour, K. C., "SWAT calibration and uncertainty programs". A User Manual, 2015, 17-66.
Anderson, M. P., W. W. Woessner, & R. J. Hunt, Applied groundwater modeling: simulation of flow and advective transport. Academic press, 2015.
Arnold, J. G., P. M. Allen, & G. Bernhardt, "A comprehensive surface-groundwater flow model". Journal of hydrology, 142(1-4), 1993, 47-69.
Arnold, J. G., D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. Harmel, A. Van Griensven, & M. W. Van Liew, "SWAT: Model use, calibration, and validation". Transactions of the ASABE, 55(4), 2012, 1491-1508.
Auffhammer, M., S. M. Hsiang, W. Schlenker, & A. Sobel, "Global climate models and climate data: a user guide for economists". Unpublished manuscript, 1, 2011, 10529-10530.
Awan, U. K., & A. Ismaeel, "A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate". Journal of Hydrology, 519, 2014, 1368-1382.
Bailey, R. T., T. C. Wible, M. Arabi, R. M. Records, & J. Ditty, "Assessing regional‐scale spatio‐temporal patterns of groundwater–surface water interactions using a coupled SWAT‐MODFLOW model". Hydrological Processes, 30(23), 2016, 4420-4433.
Barron, O., R. Crosbie, S. Charles, W. Dawes, R. Ali, W. Evans, R. Cresswell, D. Pollock, G. Hodgson, & D. Currie, "Climate change impact on groundwater resources in Australia". Waterlines report, (67), 2011.
Becker, M., T. Georgian, H. Ambrose, J. Siniscalchi, & K. Fredrick, "Estimating flow and flux of ground water discharge using water temperature and velocity". Journal of Hydrology, 296(1-4), 2004, 221-233.
Bellot, J., & E. Chirino, "Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas". Ecological modelling, 266, 2013, 30-41.
Bhanja, S. N., M. Rodell, B. Li, D. Saha, & A. Mukherjee, "Spatio-temporal variability of groundwater storage in India". Journal of hydrology, 544, 2017, 428-437.
Brown, L. C., & T. O. Barnwell, The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. US Environmental Protection Agency, 1987.
Camporese, M., C. Paniconi, M. Putti, & P. Salandin, "Ensemble Kalman filter data assimilation for a process‐based catchment scale model of surface and subsurface flow". Water Resources Research, 45(10), 2009.
Chen, S.-K., C.-S. Jang, & Y.-H. Peng, "Developing a probability-based model of aquifer vulnerability in an agricultural region". Journal of hydrology, 486, 2013, 494-504.
Coffey, M. E., S. R. Workman, J. L. Taraba, & A. W. Fogle, "Statistical procedures for evaluating daily and monthly hydrologic model predictions". Transactions of the ASAE, 47(1), 2004, 59.
Dalton, M. M., P. W. Mote, & A. K. Snover, Climate Change in the Northwest. Springer, 2013.
de Almeida Bressiani, D., P. W. Gassman, J. G. Fernandes, L. H. P. Garbossa, R. Srinivasan, N. B. Bonumá, & E. M. Mendiondo, "Review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects". International Journal of Agricultural and Biological Engineering, 8(3), 2015, 9-35.
Diersch, H.-J. G., FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science & Business Media, 2013.
Dong, Y., C. Jiang, M. R. Suri, D. Pee, L. Meng, & R. E. R. Goldstein, "Groundwater level changes with a focus on agricultural areas in the Mid-Atlantic region of the United States, 2002–2016". Environmental research, 171, 2019, 193-203.
Flint, L., & A. Flint, "California basin characterization model: a dataset of historical and future hydrologic response to climate change". US Geological Survey Dataset Release. doi, 10, 2014, F76T0JPB.
Franssen, H. J. H., "The impact of climate change on groundwater resources". International Journal of Climate Change Strategies and Management, 2009.
Fu, G., R. S. Crosbie, O. Barron, S. P. Charles, W. Dawes, X. Shi, T. Van Niel, & C. Li, "Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors". Journal of hydrology, 568, 2019, 816-834.
Gamvroudis, C., Z. Dokou, N. Nikolaidis, & G. Karatzas, "Impacts of surface and groundwater variability response to future climate change scenarios in a large Mediterranean watershed". Environmental Earth Sciences, 76(11), 2017, 1-16.
Gassman, P. W., M. R. Reyes, C. H. Green, & J. G. Arnold, "The soil and water assessment tool: historical development, applications, and future research directions". Transactions of the ASABE, 50(4), 2007, 1211-1250.
Gassman, P. W., A. M. Sadeghi, & R. Srinivasan, "Applications of the SWAT model special section: overview and insights". Journal of Environmental Quality, 43(1), 2014, 1-8.
Gogu, R., G. Carabin, V. Hallet, V. Peters, & A. Dassargues, "GIS-based hydrogeological databases and groundwater modelling". Hydrogeology Journal, 9(6), 2001, 555-569.
Green, W. H., & G. Ampt, "Studies on Soil Phyics". The Journal of Agricultural Science, 4(1), 1911, 1-24.
Grogan, D. S., D. Wisser, A. Prusevich, R. B. Lammers, & S. Frolking, "The use and re-use of unsustainable groundwater for irrigation: a global budget". Environmental Research Letters, 12(3), 2017, 034017.
Gupta, H. V., S. Sorooshian, & P. O. Yapo, "Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration". Journal of hydrologic engineering, 4(2), 1999, 135-143.
Guse, B., M. Pfannerstill, A. Gafurov, J. Kiesel, C. Lehr, & N. Fohrer, "Identifying the connective strength between model parameters and performance criteria". Hydrology and Earth System Sciences, 21(11), 2017, 5663-5679.
Hargreaves, G. H., & Z. A. Samani, "Reference crop evapotranspiration from temperature". Applied engineering in agriculture, 1(2), 1985, 96-99.
Hashemi, F., J. E. Olesen, T. Dalgaard, & C. D. Børgesen, "Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment". Science of the Total Environment, 573, 2016, 608-626.
Hossard, L., & P. Chopin, "Modelling agricultural changes and impacts at landscape scale: A bibliometric review". Environmental Modelling & Software, 122, 2019, 104513.
Hu, B., Y. Teng, Y. Zhang, & C. Zhu, "The projected hydrologic cycle under the scenario of 936 ppm CO2 in 2100". Hydrogeology Journal, 27(1), 2019, 31-53.
Jyrkama, M. I., & J. F. Sykes, "The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario)". Journal of Hydrology, 338(3-4), 2007, 237-250.
Ke, K. Y., "Application of an integrated surface water‐groundwater model to multi‐aquifers modeling in Choushui River alluvial fan, Taiwan". Hydrological Processes, 28(3), 2014, 1409-1421.
Keery, J., A. Binley, N. Crook, & J. W. Smith, "Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series". Journal of Hydrology, 336(1-2), 2007, 1-16.
Kim, N. W., I. M. Chung, Y. S. Won, & J. G. Arnold, "Development and application of the integrated SWAT–MODFLOW model". Journal of hydrology, 356(1-2), 2008, 1-16.
Kollet, S. J., & R. M. Maxwell, "Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model". Advances in Water Resources, 29(7), 2006, 945-958.
Krause, P., D. Boyle, & F. Bäse, "Comparison of different efficiency criteria for hydrological model assessment". Advances in geosciences, 5, 2005, 89-97.
Kundu, S., D. Khare, & A. Mondal, "Past, present and future land use changes and their impact on water balance". Journal of environmental management, 197, 2017, 582-596.
Lane, L., "Chapter 19: Transmission Losses, SCS–National Engineering Handbook, Section 4: Hydrology". US Government Printing Office, Washington, DC, 19, 1983, 1-19.
Liesch, T., & A. Wunsch, "Aquifer responses to long-term climatic periodicities". Journal of Hydrology, 572, 2019, 226-242.
Lin, C.-Y., & C.-P. Tung, "Procedure for selecting GCM datasets for climate risk assessment". Terrestrial, Atmospheric & Oceanic Sciences, 28(1), 2017.
Liu, W., S. Park, R. T. Bailey, E. Molina-Navarro, H. E. Andersen, H. Thodsen, A. Nielsen, E. Jeppesen, J. S. Jensen, & J. B. Jensen, "Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW". Environmental Sciences Europe, 32(1), 2020, 1-25.
Mach, K. J., M. D. Mastrandrea, T. E. Bilir, & C. B. Field, "Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5". Climatic Change, 136(3), 2016, 427-444.
Mannschatz, T., T. Wolf, & S. Hülsmann, "Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus". Environmental Modelling & Software, 76, 2016, 137-153.
Markstrom, S. L., R. G. Niswonger, R. S. Regan, D. E. Prudic, & P. M. Barlow, "GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)". US Geological Survey techniques and methods, 6, 2008, 240.
Maxwell, R., L. Condon, & S. Kollet, "A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3". Geoscientific model development, 8(3), 2015, 923-937.
McDonald, M. G., & A. W. Harbaugh, A modular three-dimensional finite-difference ground-water flow model. US Geological Survey, 1988.
McKenna, O. P., & O. E. Sala, "Groundwater recharge in desert playas: current rates and future effects of climate change". Environmental Research Letters, 13(1), 2018, 014025.
Meixner, T., A. H. Manning, D. A. Stonestrom, D. M. Allen, H. Ajami, K. W. Blasch, A. E. Brookfield, C. L. Castro, J. F. Clark, & D. J. Gochis, "Implications of projected climate change for groundwater recharge in the western United States". Journal of Hydrology, 534, 2016, 124-138.
Monteith, J. L., Evaporation and environment. Symposia of the society for experimental biology. Vol. 19. Cambridge University Press (CUP) Cambridge, 1965.
Moriasi, D. N., M. W. Gitau, N. Pai, & P. Daggupati, "Hydrologic and water quality models: Performance measures and evaluation criteria". Transactions of the ASABE, 58(6), 2015, 1763-1785.
Morsy, K. M., A. Alenezi, & D. S. AlRukaibi, "Groundwater and dependent ecosystems: revealing the impacts of climate change". Int J Appl Eng Res, 12(13), 2017, 3919-3926.
Nash, J. E., & J. V. Sutcliffe, "River flow forecasting through conceptual models part I—A discussion of principles". Journal of hydrology, 10(3), 1970, 282-290.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, & J. R. Williams, "Soil and water assessment tool theoretical documentation version 2009". 2011, Texas Water Resources Institute.
Niswonger, R. G., S. Panday, & M. Ibaraki, "MODFLOW-NWT, a Newton formulation for MODFLOW-2005". US Geological Survey Techniques and Methods, 6(A37), 2011, 44.
Nyquist, J. E., P. A. Freyer, & L. Toran, "Stream bottom resistivity tomography to map ground water discharge". Groundwater, 46(4), 2008, 561-569.
O’Neill, S., H. T. Williams, T. Kurz, B. Wiersma, & M. Boykoff, "Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report". Nature climate change, 5(4), 2015, 380-385.
Oki, T., & S. Kanae, "Global hydrological cycles and world water resources". science, 313(5790), 2006, 1068-1072.
Park, S., A. Nielsen, R. T. Bailey, D. Trolle, & K. Bieger, "A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models". Environmental modelling & software, 111, 2019, 493-497.
Parry, M. L., O. Canziani, J. Palutikof, P. Van der Linden, & C. Hanson, Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Vol. 4. Cambridge University Press, 2007.
Pitz, C. F., Predicted impacts of climate change on groundwater resources of Washington State. Environmental Assessment Program, Washington State Department of Ecology, 2016.
Pokhrel, Y. N., Y. Fan, G. Miguez‐Macho, P. J. F. Yeh, & S. C. Han, "The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE". Journal of Geophysical Research: Atmospheres, 118(8), 2013, 3233-3244.
Pollock, D. W., User guide for MODPATH version 6: a particle tracking model for MODFLOW. US Department of the Interior, US Geological Survey Reston, VA, USA, 2012.
Postel, S. L., G. C. Daily, & P. R. Ehrlich, "Human appropriation of renewable fresh water". Science, 271(5250), 1996, 785-788.
Priestley, C. H. B., & R. J. Taylor, "On the assessment of surface heat flux and evaporation using large-scale parameters". Monthly weather review, 100(2), 1972, 81-92.
Pulido-Velazquez, D., A.-J. Collados-Lara, & F. J. Alcalá, "Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain". Journal of Hydrology, 567, 2018, 803-819.
Ranganathan, A., "The levenberg-marquardt algorithm". Tutoral on LM algorithm, 11(1), 2004, 101-110.
Ray, M., & B. Simpson, "Agricultural adaptation to climate change in the Sahel: Profiles of agricultural management practices". Tetra Tech ARD Report, USAID, Washingtown DC. 60p, 2014.
Rejani, R., M. K. Jha, S. Panda, & R. Mull, "Simulation modeling for efficient groundwater management in Balasore coastal basin, India". Water Resources Management, 22(1), 2008, 23-50.
Ritchie, J. T., "Model for predicting evaporation from a row crop with incomplete cover". Water resources research, 8(5), 1972, 1204-1213.
Rushton, K. R., & S. C. Redshaw, Seepage and groundwater flow: Numerical analysis by analog and digital methods. John Wiley & Sons Incorporated, 1979.
Sanz, D., S. Castaño, E. Cassiraga, A. Sahuquillo, J. J. Gómez-Alday, S. Peña, & A. Calera, "Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)". Hydrogeology Journal, 19(2), 2011, 475-487.
Sophocleous, M., J. Koelliker, R. Govindaraju, T. Birdie, S. Ramireddygari, & S. Perkins, "Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas". Journal of Hydrology, 214(1-4), 1999, 179-196.
Sophocleous, M., "Interactions between groundwater and surface water: the state of the science". Hydrogeology journal, 10(1), 2002, 52-67.
Srinivasan, V., & S. Lele, "From groundwater regulation to integrated water management". Economic & Political Weekly, 52(31), 2017, 107.
Stefania, G. A., M. Rotiroti, L. Fumagalli, F. Simonetto, P. Capodaglio, C. Zanotti, & T. Bonomi, "Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources". Hydrogeology Journal, 26(1), 2018, 147-162.
Tan, M. L., P. W. Gassman, R. Srinivasan, J. G. Arnold, & X. Yang, "A review of SWAT studies in Southeast Asia: applications, challenges and future directions". Water, 11(5), 2019, 914.
Tan, M. L., P. W. Gassman, J. Liang, & J. M. Haywood, "A review of alternative climate products for SWAT modelling: Sources, assessment and future directions". Science of the Total Environment, 795, 2021, 148915.
Therrien, R., R. McLaren, E. Sudicky, & S. Panday, "HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport". Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 830, 2010.
Touhami, I., E. Chirino, J. Andreu, J. Sánchez, H. Moutahir, & J. Bellot, "Assessment of climate change impacts on soil water balance and aquifer recharge in a semiarid region in south east Spain". Journal of Hydrology, 527, 2015, 619-629.
Turner, S. W., M. Hejazi, K. Calvin, P. Kyle, & S. Kim, "A pathway of global food supply adaptation in a world with increasingly constrained groundwater". Science of the total environment, 673, 2019, 165-176.
Tweed, S., M. Leblanc, I. Cartwright, G. Favreau, & C. Leduc, "Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia". Journal of Hydrology, 408(3-4), 2011, 257-275.
Vorosmarty, C. J., P. Green, J. Salisbury, & R. B. Lammers, "Global water resources: vulnerability from climate change and population growth". science, 289(5477), 2000, 284-288.
Wang, S.-J., C.-H. Lee, C.-F. Yeh, Y. F. Choo, & H.-W. Tseng, "Evaluation of climate change impact on groundwater recharge in groundwater regions in Taiwan". Water, 13(9), 2021, 1153.
Wei, F., T. H. Grubesic, & B. W. Bishop, "Exploring the GIS knowledge domain using CiteSpace". The Professional Geographer, 67(3), 2015, 374-384.
Williams, J. R., & R. W. Hann, HYMO: Problem-oriented Computer Language for Hydrologic Modeling: Users Manual. Vol. 9. Agricultural Research Service, US Department of Agriculture, Southern Region, 1973.
Winter, T. C., Ground water and surface water: a single resource. Vol. 1139. Diane Publishing, 1999.
Wu, S., B. Bates, A. Zbigniew Kundzewicz, & J. Palutikof, "Climate change and water". Technical Paper of the Intergovernmental Panel on Climate Change. Geneva, 2008.
中央地質調查所,《台灣地質圖,比例尺五十萬之一》, 1986。
經濟部,《地下水補注地質敏感區劃定計畫書 G0001 濁水溪沖積扇》, 2014。
經濟部工業局,《雲林縣離島式基礎工業區開發計畫八十二年度整體規劃通盤檢討及綱要計畫擬定抽砂、造地、海堤、排水及防洪研究》, 1993。
許昊,《地下水補注量推估之研究-以濁水溪沖積扇為例》, 國立臺灣大學, 2010。
賈儀平,《濁水溪沖積扇南翼之水文地質架構》, 濁水溪沖積扇地下水及水文地質研討會論文集, 1996, 113-125頁。
指導教授 王士榮 陳沛芫(Shih-Jung Wang Pei-Yuan Chen) 審核日期 2023-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明