博碩士論文 109821001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.118.164.121
姓名 林儀臻(I-Chen Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 研究雙特松對HepG2細胞之DNA修復的影響
(The impact on DNA repair in HepG2 cells treated with Dicrotophos)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機磷類 (Organophosphate, OP) 是一種用於防治害蟲的殺蟲劑。由於其實用性高且對環境毒性低,它們被認為是使用最廣泛的殺蟲劑。雙特松 (Dicrotophos, Dic) 是一種含有有機磷的殺蟲劑,由於其目標害蟲之種類十分廣泛,故被大量地使用於各國。儘管其有效性已被證實,但已有推測認為Dic可能與人類的基因毒性作用、基因永久突變與疾病有關。然而,關於此基因毒性之損傷的機制卻尚未有詳細的闡述。先前,透過鹼性彗星試驗,我們揭露了Dic可能引起DNA單股斷裂的能力。為了進一步找出此單股斷裂可能造成的影響,我們從先前處理過Dic的細胞中獲取無細胞提取物 (cell-free extract),再利用彗星試驗之體外DNA 修復檢測來評估其鹼基切除修復 (Base excision repair, BER) 和核苷酸切除修復 (Nucleotide excision repair, NER) 的活性。在有Dic處理過的組別中,其所產生的DNA尾巴之長度較未處理過之對照組短,說明BER和NER修復蛋白之切割能力皆受到了Dic的抑制。因此,我們可以得出BER和NER在Dic處理後均被抑制之結論。有鑑於未修復之單股斷裂有可能發展成DNA之雙股斷裂,我們進一步使用中性彗星試驗和H2AX之磷酸化 (γH2AX) 以檢測Dic處理後,細胞所產生之雙股斷裂的情形。兩種試驗皆顯示在Dic處理後,細胞雙股斷裂之情形有顯著升高的現象。為了進一步再探討細胞針對此雙股斷裂之情形的反應機制,我們分別利用了同源重組修復 (Homologous recombination, HR) 試劑與西方墨點法來評估HR與非同源性末端黏合之修復 (Non-homologous end joining, NHEJ) 的活性或修復蛋白之基因表現量。結果顯示,在HR活性試驗中,與未處理過之對照組相比,Dic顯著地抑制了HR之修復活性。此外,NHEJ之重要相關基因Ku80蛋白表現量,同樣在經Dic處理後也顯著降低。考慮到錯誤配對之DNA修復 (Mismatch repair, MMR) 是防止DNA複製與修復之錯誤的重要機制,我們再度進一步利用西方墨點法測定了在Dic處理後,MMR之重要相關基因msh2和mlh1的基因表現情形。結果顯示,在Dic處理過之細胞中,其MSH2和MLH1之蛋白表現量皆有顯著下調的趨勢,表示MMR修復之效能有可能在Dic處理過後發生改變。總結來說,我們揭示了在Dic處理後所引起的基因毒性可以對多個DNA修復途徑之活性產生負面的影響。本研究針對雙特松之潛在負面影響提供了更詳細的分子機制,可有助於調節人體健康的發展。
摘要(英) Organophosphates (OP) are a group of insecticides used for pest control. Due to their high level of utility, yet relatively low environmental toxicity, they are considered the most widely used insecticides. Dicrotophos (Dic), an OP insecticide, is extensively used due to its broad spectrum of target pests. Despite its effectiveness, Dic has been speculated to be asso-ciated with genotoxic effects, gene mutagenicity, and diseases in humans. However, the mechanism in terms of genotoxic insults has not been fully explicated. Previously, by using the alkaline comet assay, we revealed Dic could induce DNA sin-gle-strand breaks (SSBs). To further determine the response of SSBs, we assessed the activity of Base excision repair (BER) and Nucleotide excision repair (NER) via the comet-based in vitro DNA repair assay, utilizing a cell-free extract derived from cells that were formerly subjected to Dic. In the Dic-treated groups, the length of the DNA tail was shorter compared to the non-exposed groups, indicating the incision ability of BER/NER repair enzymes was decreased by Dic. Thus, we concluded that both BER and NER were suppressed after Dic exposure. Given the fact that unrepaired SSBs could potentially develop into DNA double-strand breaks (DSBs), we further evaluate the extent of DSBs following Dic exposure by implementing the neutral comet assay, along with the assessment of the expression level of the phosphorylated form of H2AX (γH2AX). Both assays revealed a notable increase in the level of DSBs after Dic ex-posure. To determine the response of DSBs, homologous recombination (HR) activity and non-homologous end joining (NHEJ) were evaluated via the HR assay kit and western blot, respectively. Our results showed Dic significantly attenuated the HR repair activity com-pared to the non-exposed control. Moreover, the expression level of the NHEJ-associated gene, Ku80 was also significantly reduced after Dic exposure. Considering that Mismatch repair (MMR) is a vital mechanism for preventing errors in DNA replication and repair, we were prompted to investigate the expression of MMR-associated genes, msh2 and mlh1, fol-lowing Dic exposure. Our results showed that both MSH2 and MLH1 protein expression were notably downregulated in Dic-treated cells, suggesting the alteration of the MMR effi-cacy might occur after Dic exposure. Collectively, we highlighted that genotoxicity caused by Dic exposure negatively modulates the activity of multiple DNA repair pathways. This present study provides a more detailed mechanism into the potential adverse effects of Di-crotophos, which may further help in modulating health complications.
關鍵字(中) ★ 雙特松
★ DNA損傷
★ DNA修復
★ BER
★ NER
★ MMR
★ HR
★ NHEJ
★ HepG2
關鍵字(英) ★ Dicrotophos
★ DNA damage
★ DNA repair
★ BER
★ NER
★ MMR
★ HR
★ NHEJ
★ HepG2
論文目次 中文摘要 i
Abstract iii
Acknowledgments v
Table of contents vi
List of figures ..ix
Chapter 1 Introduction 1
1-1 Background 1
1-1-1 Organophosphate insecticide - Dicrotophos (Dic) 1
1-1-2 Pesticide and DNA damage response (DDR) 2
1-1-3 Pesticide and the repair of Single-Strand DNA damage 3
1-1-4 Pesticide and the repair of Double-Strand DNA damage 4
1-1-5 Pesticide and Mismatch repair (MMR) 5
1-2 Specific aim 6
1-3 Research Framework 6
Chapter 2 Material and Methods 8
2-1 Cell cultures 8
2-2 Cell counting 9
2-3 Chemical 10
2-4 MTT assay 10
2-5 Neutral comet assay 10
2-6 Comet-based in vitro DNA repair assay 12
2-7 Protein extraction 13
2-8 Bradford protein assay 14
2-9 Protein sample preparation 14
2-10 Protein electrophoresis 15
2-11 Western blot 16
2-12 Plasmid DNA isolation 16
2-13 Homologous recombination activity assay 17
2-14 Cell cycle analysis 18
2-15 Apoptosis assay 19
2-16 Statistical analysis 20
Chapter 3 Results 21
3-1 Dic suppressed the cell viability in HepG2 cells 21
3-2 Dic decreased the BER repair capacity in HepG2 cells 21
3-3 Dic decreased the NER repair capacity in HepG2 cells 22
3-4 DNA double-strand breaks were provoked after Dic exposure in HepG2 cells 23
3-5 Dic impaired the HR activity in HepG2 cells 24
3-6 Dic altered the expression level of NHEJ-related gene, Ku80 25
3-7 Dic altered the expression of MMR-related genes, MSH2 and MLH1 25
Chapter 4 Discussion and Conclusion 26
4-1 The selection of cell line 26
4-2 The toxicology of Dic in HepG2 cells 26
4-3 The impact of Dic on both BER and NER activity in HepG2 cells 27
4-4 The genotoxic impact, especially the induction of double-strand breaks caused by Dic 30
4-5 The impact of Dic on both HR and NHEJ in terms of double-strand breaks formation
32
4-6 The impact of Dic on MMR repair in HepG2 cells 34
4-7 The impact of Dic on apoptosis in HepG2 cells 35
4-8 The impact of Dic on Cell cycle in HepG2 cells 35
4-9 Conclusion 36
Chapter 5 References 38
Chapter 6 Figures 46
Chapter 7 Appendices 55
Appendix 7-1 Supplementary Figure 1 55
Appendix 7-2 Supplementary Figure 2 56
Appendix 7-3 List of materials and reagents 57
Appendix 7-4 Solution preparation 58
Appendix 7-5 List of antibodies 60
Appendix 7-6 List of assay kits 61
Appendix 7-7 SDS-PAGE gel recipe 61
Appendix 7-8 Experimental setup for HR assay 62
參考文獻 1. Wu, J.C., et al., Genotoxicity of dicrotophos, an organophosphorous pesticide, assessed with different assays in vitro. Environ Toxicol, 2012. 27(5): p. 307-15.
2. Hseu, Y.C., et al., Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol, 2017. 103: p. 253-260.
3. <2002 Dic Facts (from EPA).pdf>.
4. Ore, O.T., et al., Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environmental Chemistry and Ecotoxicology, 2023. 5: p. 9-23.
5. Pirsaheb, M., et al., Occurrence of Residual Organophosphorus Pesticides in soil of some Asian countries, Australia and Nigeria. IOP Conference Series: Materials Science and Engineering, 2020. 737(1).
6. Naughton, S.X. and A.V. Terry, Jr., Neurotoxicity in acute and repeated organophosphate exposure. Toxicology, 2018. 408: p. 101-112.
7. Mulla, S.I., et al., Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation, in Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, G. Saxena and R.N. Bharagava, Editors. 2020, Springer Singapore: Singapore. p. 265-290.
8. Hu, L., et al., The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis. Environ Pollut, 2017. 231(Pt 1): p. 319-328.
9. Koutros, S., et al., Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ Int, 2019. 127: p. 199-205.
10. Yang, K.J., J. Lee, and H.L. Park, Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. Int J Environ Res Public Health, 2020. 17(14).
11. Thakur, S., et al., Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells. J Biochem Mol Toxicol, 2021. 35(2): p. e22640.
12. Koutros, S., et al., Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol, 2013. 177(1): p. 59-74.
13. Pardo, L.A., et al., Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ Health, 2020. 19(1): p. 30.
14. Donley, N., The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health, 2019. 18(1): p. 44.
15. Ellsworth, P.C. and A. Fournier, Highly Hazardous Pesticide Phase-Out for US Cotton Growers: Alternatives, Risks, and Opportunities. 2022.
16. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
17. Cannataro, V.L., J.D. Mandell, and J.P. Townsend, Attribution of Cancer Origins to Endogenous, Exogenous, and Preventable Mutational Processes. Mol Biol Evol, 2022. 39(5).
18. Oliveira, A.I.F.-R.a.P.A., Oxford Textbook of Oncology, ed. D.J. Kerr, et al. 2016: Oxford University Press.
19. Smith, M.T., et al., Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ Health Perspect, 2016. 124(6): p. 713-21.
20. Li, D., et al., The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere, 2015. 135: p. 387-93.
21. Arteaga-Gómez, E., et al., Cytogenotoxicity of selected organophosphate insecticides on HaCaT keratinocytes and NL-20 human bronchial cells. Chemosphere, 2016. 145: p. 174-84.
22. Zepeda-Arce, R., et al., Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol, 2017. 32(6): p. 1754-1764.
23. Ahmad, A., A. Zafar, and M. Ahmad, Mitigating effects of apigenin on edifenphos-induced oxidative stress, DNA damage and apoptotic cell death in human peripheral blood lymphocytes. Food and Chemical Toxicology, 2019. 127: p. 218-227.
24. D’Costa, A.H., et al., Induction of DNA damage in the peripheral blood of zebrafish (Danio rerio) by an agricultural organophosphate pesticide, monocrotophos. International Aquatic Research, 2018. 10(3): p. 243-251.
25. Dias, R., et al., DNA damage and biochemical responses in estuarine bivalve Donax incarnatus (Gmelin, 1791) exposed to sub-lethal concentrations of an organophosphate pesticide monocrotophos. Environ Monit Assess, 2021. 193(6): p. 317.
26. Sonzogni, L., et al., DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein. Biomolecules, 2022. 12(2).
27. Xu, D., et al., Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environ Pollut, 2018. 238: p. 1048-1055.
28. Yu, S., et al., Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos. Aquat Toxicol, 2015. 159: p. 256-66.
29. Saad-Hussein, A., et al., GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutat Res Genet Toxicol Environ Mutagen, 2017. 819: p. 20-25.
30. Ceja Galvez, H.R., et al., Genetic profile for the detection of susceptibility to poisoning by exposure to pesticides. Ann Agric Environ Med, 2021. 28(2): p. 208-213.
31. Parker, A.M., et al., UV/H(2)O(2) advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays. Chemosphere, 2017. 182: p. 477-482.
32. Hossain, M.A., Y. Lin, and S. Yan, Single-Strand Break End Resection in Genome Integrity: Mechanism and Regulation by APE2. Int J Mol Sci, 2018. 19(8).
33. Kumar, N., et al., Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol, 2020. 43(1 suppl. 1): p. e20190104.
34. Kim, D.V., et al., Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des, 2019. 25(3): p. 298-312.
35. Marteijn, J.A., et al., Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol, 2014. 15(7): p. 465-81.
36. Barry, K.H., et al., Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ Health Perspect, 2011. 119(12): p. 1726-32.
37. Barry, K.H., et al., Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk. Carcinogenesis, 2012. 33(2): p. 331-7.
38. Sanders, L.H., et al., Editor′s Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson′s Disease Risk. Toxicol Sci, 2017. 158(1): p. 188-198.
39. Rumsey, W.L., et al., Effects of airborne toxicants on pulmonary function and mitochondrial DNA damage in rodent lungs. Mutagenesis, 2017. 32(3): p. 343-353.
40. Zuo, Z., et al., Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. Aquat Toxicol, 2012. 122-123: p. 106-12.
41. Giglia-Mari, G., A. Zotter, and W. Vermeulen, DNA damage response. Cold Spring Harb Perspect Biol, 2011. 3(1): p. a000745.
42. Pannunzio, N.R., G. Watanabe, and M.R. Lieber, Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem, 2018. 293(27): p. 10512-10523.
43. Gonzalez, D. and A. Stenzinger, Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes Chromosomes Cancer, 2021. 60(5): p. 299-302.
44. Frappart, P.O. and P.J. McKinnon, Mouse models of DNA double-strand break repair and neurological disease. DNA Repair (Amst), 2008. 7(7): p. 1051-60.
45. Costa, M.B., et al., Chromosomal abnormalities and dysregulated DNA repair gene expression in farmers exposed to pesticides. Environ Toxicol Pharmacol, 2021. 82: p. 103564.
46. Wahyuni, E.A., et al., The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. Sci Total Environ, 2021. 758: p. 143597.
47. Scandolara, T.B., et al., Somatic DNA Damage Response and Homologous Repair Gene Alterations and Its Association With Tumor Variant Burden in Breast Cancer Patients With Occupational Exposure to Pesticides. Front Oncol, 2022. 12: p. 904813.
48. Liu, D., G. Keijzers, and L.J. Rasmussen, DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res Rev Mutat Res, 2017. 773: p. 174-187.
49. Schofield, M.J. and P. Hsieh, DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol, 2003. 57: p. 579-608.
50. He, Y., et al., The role of DNA mismatch repair in immunotherapy of human cancer. Int J Biol Sci, 2022. 18(7): p. 2821-2832.
51. Vimal, D., et al., Atrazine or bisphenol A mediated negative modulation of mismatch repair gene, mlh1 leads to defective oogenesis and reduced female fertility in Drosophila melanogaster. Chemosphere, 2019. 225: p. 247-258.
52. Ren, J., et al., The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One, 2019. 14(8): p. e0220500.
53. Hsu, T., et al., Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos. Aquat Toxicol, 2013. 126: p. 9-16.
54. Liu, X. and Z.R. Craig, Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary†. Biol Reprod, 2019. 101(4): p. 854-867.
55. Driessens, N., et al., Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer, 2009. 16(3): p. 845-56.
56. Ko, E., K.Y. Lee, and D.S. Hwang, Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev, 2012. 21(11): p. 1877-86.
57. Vodenkova, S., et al., An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc, 2020. 15(12): p. 3844-3878.
58. Lu, Y., Y. Liu, and C. Yang, Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp, 2017(128).
59. Lin, H.D., et al., 4-Aminobiphenyl suppresses homologous recombination repair by a reactive oxygen species-dependent p53/miR-513a-5p/p53 loop. Toxicology, 2020. 444: p. 152580.
60. Lin, H.D., et al., 4-Aminobiphenyl inhibits the DNA homologous recombination repair in human liver cells: The role of miR-630 in downregulating RAD18 and MCM8. Toxicology, 2020. 440: p. 152441.
61. Weterings, E., et al., A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst), 2016. 43: p. 98-106.
62. Lozano-Paniagua, D., et al., Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food Chem Toxicol, 2021. 151: p. 112127.
63. Saad-Hussein, A., et al., Early prediction of liver carcinogenicity due to occupational exposure to pesticides. Mutat Res Genet Toxicol Environ Mutagen, 2019. 838: p. 46-53.
64. VoPham, T., et al., Pesticide exposure and liver cancer: a review. Cancer Causes Control, 2017. 28(3): p. 177-190.
65. Wang, T., et al., Three widely used pesticides and their mixtures induced cytotoxicity and apoptosis through the ROS-related caspase pathway in HepG2 cells. Food Chem Toxicol, 2021. 152: p. 112162.
66. Zhang, N., et al., Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells. Environ Toxicol Pharmacol, 2021. 88: p. 103741.
67. Wei, H., et al., Prenatal exposure to pesticides and domain-specific neurodevelopment at age 12 and 18 months in Nanjing, China. Environ Int, 2023. 173: p. 107814.
68. Azqueta, A., et al., Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? Mutat Res Genet Toxicol Environ Mutagen, 2022. 881: p. 503520.
69. Collins, A.R., S.J. Duthie, and V.L. Dobson, Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 1993. 14(9): p. 1733-5.
70. Grundy, G.J. and J.L. Parsons, Base excision repair and its implications to cancer therapy. Essays Biochem, 2020. 64(5): p. 831-843.
71. Meira, L.B., N.E. Burgis, and L.D. Samson, Base excision repair. Adv Exp Med Biol, 2005. 570: p. 125-73.
72. Valverde, M., et al., Hydrogen Peroxide-Induced DNA Damage and Repair through the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int, 2018. 2018: p. 1615497.
73. D′Augustin, O., et al., Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? Int J Mol Sci, 2020. 21(21).
74. Thakur, S., M. Dhiman, and A.K. Mantha, APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem, 2018. 441(1-2): p. 201-216.
75. Alleva, R., et al., Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity. Environ Toxicol, 2018. 33(4): p. 476-487.
76. Whitaker, A.M., et al., Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed), 2017. 22(9): p. 1493-1522.
77. Schärer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609.
78. Melis, J.P., H. van Steeg, and M. Luijten, Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal, 2013. 18(18): p. 2409-19.
79. Wang, Y., Bulky DNA lesions induced by reactive oxygen species. Chem Res Toxicol, 2008. 21(2): p. 276-81.
80. Lee, T.-H. and T.-H. Kang, DNA Oxidation and Excision Repair Pathways. 2019. 20(23): p. 6092.
81. Kaur, K. and R. Kaur, Modulation of DNA damage by XPF, XPG and ERCC1 gene polymorphisms in pesticide-exposed agricultural workers of Punjab, North-West India. Mutat Res Genet Toxicol Environ Mutagen, 2021. 861-862: p. 503302.
82. Roy, I.M., P.S. Nadar, and S. Khurana, Neutral Comet Assay to Detect and Quantitate DNA Double-Strand Breaksin Hematopoietic Stem Cells. Bio Protoc, 2021. 11(16): p. e4130.
83. Lu, J., et al., Exposure to environmental concentrations of natural pyrethrins induces hepatotoxicity: Assessment in HepG2 cell lines and zebrafish models. Chemosphere, 2022. 288(Pt 2): p. 132565.
84. Zhao, F., et al., Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. Fish Physiol Biochem, 2015. 41(3): p. 613-24.
85. Kuo, L.J. and L.X. Yang, Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo, 2008. 22(3): p. 305-9.
86. Collins, P.L., et al., DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nature Communications, 2020. 11(1): p. 3158.
87. Molinaro, C., A. Martoriati, and K. Cailliau, Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel), 2021. 13(15).
88. Huang, P., et al., Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells. Int J Mol Sci, 2015. 16(7): p. 14353-68.
89. Yu, Y., et al., A comparative study of using comet assay and gammaH2AX foci formation in the detection of N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage. Toxicol In Vitro, 2006. 20(6): p. 959-65.
90. Kurashige, T., M. Shimamura, and Y. Nagayama, Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine. J Radiat Res, 2016. 57(3): p. 312-7.
91. Nikolova, T., F. Marini, and B. Kaina, Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays. Mutat Res Genet Toxicol Environ Mutagen, 2017. 822: p. 10-18.
92. Bukowski, K., et al., Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. Molecules, 2022. 27(12).
93. Viau, M., et al., Cadmium inhibits non-homologous end-joining and over-activates the MRE11-dependent repair pathway. Mutat Res, 2008. 654(1): p. 13-21.
94. Zeng, H., et al., Circular RNA circ_Cabin1 promotes DNA damage in multiple mouse organs via inhibition of non-homologous end-joining repair upon PM(2.5) exposure. Arch Toxicol, 2021. 95(10): p. 3235-3251.
95. Liu, J., et al., Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology, 2020. 444: p. 152581.
96. Yang, X., et al., Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis, 2019. 40(8): p. 1021-1030.
97. Suárez-Larios, K., A.-M. Salazar-Martínez, and R. Montero-Montoya, Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. Journal of Toxicology, 2017. 2017: p. 3574840.
98. Rossner, P., Jr., et al., Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants. Mutat Res, 2014. 763-764: p. 28-38.
99. Doukas, S.G., et al., The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Curr Oncol, 2022. 29(8): p. 5531-5549.
100. Lo, Y.L., et al., Polymorphisms of MLH1 and MSH2 genes and the risk of lung cancer among never smokers. Lung Cancer, 2011. 72(3): p. 280-6.
101. Gargiulo, S., et al., Germline MLH1 and MSH2 mutations in Italian pancreatic cancer patients with suspected Lynch syndrome. Fam Cancer, 2009. 8(4): p. 547-53.
102. Haron, N.H., et al., Microsatellite Instability and Altered Expressions of MLH1 and MSH2 in Gastric Cancer. Asian Pac J Cancer Prev, 2019. 20(2): p. 509-517.
103. Li, Q., M. Kobayashi, and T. Kawada, Carbamate pesticide-induced apoptosis in human T lymphocytes. Int J Environ Res Public Health, 2015. 12(4): p. 3633-45.
104. Ishikawa, K., H. Ishii, and T. Saito, DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol, 2006. 25(7): p. 406-11.
105. Zhivotovsky, B. and S. Orrenius, Cell cycle and cell death in disease: past, present and future. J Intern Med, 2010. 268(5): p. 395-409.
106. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
107. Shieh, P., C.R. Jan, and W.Z. Liang, The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology, 2019. 417: p. 1-14.
108. Huo, D., et al., Omethoate induces pharyngeal cancer cell proliferation and G1/S cell cycle progression by activation of Akt/GSK-3β/cyclin D1 signaling pathway. Toxicology, 2019. 427: p. 152298.
指導教授 陳師慶 粘仲毅(Ssu-Ching Chen Chung-Yi Nien) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明