博碩士論文 109821009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.12.71.237
姓名 何欣澄(Hsin-Cheng Ho)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
(Constructing novel engineered bacteria based on Lpp-OmpA system to enhance the cadmium bioremediation)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著工業的發展,工廠迅速地在各處被建立,疏於管理的情況下,造成許多重金屬污染隨之發生。重金屬具有毒性且無法被分解,能夠累積於人體內,導致疾病的發生。本研究試圖以膜上表現系統將金屬硫蛋白表現於大腸桿菌外膜上,藉此提升菌體對重金屬的生物復育能力。首先,利用基因編輯技術,將金屬硫蛋白與膜上表現系統Lpp-OmpA融合,藉此表現金屬硫蛋白於細胞表面,以改善金屬離子被阻擋在細胞膜外,無法被菌體吸附的阻礙。與此同時,本研究評估基因轉殖菌在大量表現蛋白質時最適合的條件。接著利用西方墨點法及綠色螢光蛋白,確認目標蛋白的表現與摺疊。轉殖菌株建構完成後,針對E. coli C43(DE3) pLysS以及攜帶pLO及pLM5載體的該菌株進行對重金屬鎘的敏感性測試,在達80 mg/L鎘離子濃度時,表現pLM5使其相較其他菌株具有較高抗性。在鎘吸附測試中,基因轉殖菌表現LO-MTT5於膜上之菌體吸附容量為1.47 mg/g,相較胞內表現MTT5之吸附容量0.2585 mg/g提升5.6倍的吸附能力,其改善重金屬被阻隔在外而對吸附造成的障礙。在不同濃度鎘離子吸附測試中,發現隨著環境中鎘離子濃度由2.5 mg/L提升至80 mg/L,吸附量會隨之上升,然而移除率卻由54.8%降至24.6%。在Langmuir及Freundlich等溫模式中,前者qm為3.1308 mg/g、KL為0.0267、RL為0.3192,後者KF為0.0677、n為1.0138,皆顯示為有效吸附,並由R2值推測該吸附模式較符合多層吸附。在FTIR放射光譜,N-H、C=O、P=O鍵結波長產生位移,代表這些鍵結參與鎘離子的吸附。在mRNA基因表現分析中,表現pLM5時dnaK、clpB基因不受鎘離子存在影響,推得LO-MTT5對菌體形成保護,使其蛋白質能正常摺疊。另外,czcB基因受鎘離子影響而表現量上升,顯示鎘離子存在會使菌體表現大量鎘外排幫浦,可能為降低胞內累積的原因之一。最後在污水的離地測試中,顯示基因轉殖菌株吸附能力不受其他金屬離子影響,並且在48小時達到20.5 mg/g的鎘離子吸附量,具有應用於現地的潛力,未來可以針對其回收作更深入之研究。
摘要(英) Accroding to the industrial delopment, factories were rapidly built. Due to the neglect of management, heavy metal pollution occurred. Heavy metals, such as Cadmium (Cd), is toxic and non-degratable, which accumulate inside the human body resulting in disease. In our study, the surface display system Lpp-OmpA was fused to the metal-binding protein metallothionein to enhance bioremediation. After construction, the suitable condition for protein overexpression was evaluated. Western blot and green fluorescent protein were used to confirm the expression and folding of the target protein. In the cadmium sensitivity test, E. coli with pLM5 has higher resistance than other strains in 80 mg/L Cd2+. In the cadmium adsorption test, the adsorption capacity of the E. coli with pLM5 was 1.47 mg/g. Compared with the adsorption capacity of E. coli with pET-MTT5 (0.2585 mg/g), the adsorption capacity of E. coli with pLM5 has shown a 5.6-fold impovement. The result showed that outer membrane display stradegy was able to overcome the obstacles in cadmium adsorption. For increased initial Cd2+ concentrations of 2.5 - 80 mg/L, the adsorption capacity would increase, but the removal rate would drop from 54.8% to 24.6%. Otherwise, biosorption data of E. coli expressing pLM5 preferred to be simulated with Freundlich model. In Langmuir and Freundlich isotherm models, the correlation parameters for each model were shown. In the FTIR emission spectrum, the wavelengths of the N-H, C=O, and P=O bonding have shifted, indicating that these bonds are involved in the adsorption of Cd2+. In the mRNA gene expression analysis, the dnaK and clpB genes indicated the expression of LO-MTT5 may inhibit protein misfolding. In addition, the expression of czcB gene indicate that the presence of Cd2+ would induce the expression of cadmium efflux pump. Finally in the real wastewater test, the Cd2+ adsorption capacity of E. coli with pLM5 reached 20.5 mg/g within 48 hours. In conclusion, the outer membrane expression of metallothionein was shown as a potential techenique for recover industrial pollution.
關鍵字(中) ★ 鎘
★ 生物復育
★ 基因轉殖
★ 金屬硫蛋白
★ 膜上表現
關鍵字(英) ★ Cadmium
★ Bioremediation
★ Transgene
★ Metallothionein
★ Surface display
論文目次 致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
公式目錄 ix
第壹章 緒論 (Introduction) 1
1.1 研究背景 1
1.2 鎘金屬的特性與危害 2
1.3 生物復育 (Bioremediation) 2
1.3.1 微生物策略 (Microbial remediation) 3
1.3.2 生物吸附與生物累積 3
1.4 基因轉殖 4
1.4.1 表現宿主:大腸桿菌 (Escherichia coli) 5
1.4.2 膜上表現系統:Lpp-OmpA 6
1.4.3 金屬硫蛋白:四膜蟲之金屬硫蛋白 MTT5 7
1.5 基因轉殖菌之應用與價值 8
第貳章 實驗目的與實驗架構 9
第參章 實驗材料與方法 (Meterials and Methods) 11
3.1 實驗材料 11
3.1.1 使用儀器與廠牌 11
3.1.2 常用藥品與試劑 13
3.2 實驗方法 17
3.2.1 菌株保存與繼代培養 (E. coli) 17
3.2.2 細菌質體萃取 18
3.2.3 聚合酶連鎖反應(Polymerase chain reaction ,PCR) 18
3.2.4 TSS 法之大腸桿菌勝任細胞製備及轉型 19
3.2.5 限制酵素處理 21
3.2.6 DNA 膠體純化 22
3.2.7 DNA 接合反應 22
3.2.8 蛋白質誘導 23
3.2.9 蛋白質萃取 24
3.2.10 膜蛋白分離萃取 24
3.2.11 蛋白質濃度檢定(Bradford 法) 25
3.2.12 蛋白質濃度檢定(RC-DC 法) 26
3.2.13 SDS-PAGE 蛋白質電泳 26
3.2.14 西方免疫墨點法 (Western blot) 28
3.2.15 細菌生長曲線測定 29
3.2.16 重金屬吸附試驗 30
3.2.17 細菌 RNA 萃取 31
3.2.18 反轉錄作用 (Reverse transcription) 32
3.2.19 即時定量連鎖聚合酶反應 (Real-time quantitative polymerase chain reaction, Q-PCR) 33
第肆章 實驗結果 (Result) 34
4.1 建構基因轉殖菌 C43(DE3) pLysS/pLM5 34
4.1.1 建構膜上表現載體 pLO 及 pLM5 34
4.1.2 融合蛋白 LO-MTT5 誘導表現測試 35
4.1.3 藉由螢光蛋白及膜蛋白分離萃取以驗證蛋白質成功表現 35
4.2 研究基因轉殖菌 C43(DE3) pLysS/pLM5 對鎘金屬的吸附 37
4.2.1 檢驗基因轉殖菌 C43(DE3) pLysS/pLM5 之重金屬敏感度 37
4.2.2 比較金屬硫蛋白 MTT5 表現於不同位置對鎘離子吸附能力的影響 37
4.2.3 鎘離子暴露濃度對基因轉殖菌 C43(DE3) pLysS/pLM5 鎘離子吸附能力之影響 38
4.2.4 等溫吸附模式 38
4.3 探討表現融合蛋白 LO-MTT5 在 E. coli 外膜上相關的生物機制 40
4.3.1 以 FTIR 光譜法分析鎘離子與蛋白質的鍵結關係 40
4.3.2 以 qPCR 分析 C43(DE3)/pLM5 抵禦鎘之相關基因表達 40
4.4 工業污染水之離地測試 42
第伍章 討論 (Discussion) 43
5.1 融合蛋白 Lpp-OmpA-MTT5 之設計及表現 43
5.2 整合螢光蛋白 sfGFP 以檢視蛋白質表現 44
5.3 膜上表現金屬硫蛋白 MTT5 加強對鎘的生物吸附 45
5.4 基因轉殖菌 C43(DE3) pLysS/pLM5 之生物復育機制探討 48
5.5 應用基因轉殖菌進行污染水離地測試 50
第陸章 結論 (Conclusion) 51
參考文獻 (Reference) 52
圖表 60
附加資料 (Supplementary file) 79
參考文獻 Ahemad, M. 2014. Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia microbiologica, 59(4), 321-332.
Ahluwalia, S.S., Goyal, D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource technology, 98(12), 2243-2257.
Andrews, G.K. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical pharmacology, 59(1), 95-104.
Arivalagan, P., Singaraj, D., Haridass, V., Kaliannan, T. 2014. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecological Engineering, 71, 728-735.
Bae, W., Chen, W., Mulchandani, A., Mehra, R.K. 2000. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnology and bioengineering, 70(5), 518-524.
Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Current opinion in biotechnology, 10(5), 411-421.
Baumgarten, T., Schlegel, S., Wagner, S., Low, M., Eriksson, J., Bonde, I., Herrgard, M.J., Heipieper, H.J., Norholm, M.H., Slotboom, D.J., de Gier, J.W. 2017. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3). Sci Rep, 7, 45089.
Blindauer, C.A., Leszczyszyn, O.I. 2010. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Natural product reports, 27(5), 720-741.
Bratić, A.M., Majić, D.B., Samardžić, J.T., Maksimović, V.R. 2009. Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli. Journal of plant physiology, 166(9), 996-1000.
Bruins, M.R., Kapil, S., Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45(3), 198-207.
Capdevila, M., Bofill, R., Palacios, O., Atrian, S. 2012. State-of-the-art of metallothioneins at the beginning of the 21st century. Coordination Chemistry Reviews, 256(1-2), 46-62.
Chang, Y., Liu, G., Guo, L., Liu, H., Yuan, D., Xiong, J., Ning, Y., Fu, C., Miao, W. 2014. Cd‐Metallothioneins in Three Additional Tetrahymena Species: Intragenic Repeat Patterns and Induction by Metal Ions. Journal of Eukaryotic Microbiology, 61(4), 333-342.
Charbit, A., Boulain, J.C., Ryter, A., Hofnung, M. 1986. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. The EMBO journal, 5(11), 3029-3037.
Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., Zhang, D. 2020. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Science of The Total Environment, 741, 140422.
Chiang, F.-H., Chang, C.-C. 2008. MTGFP融合蛋白摺疊過程中分子內螢光能量轉移研究. in: 分子醫學與生物工程研究所, Vol. 碩士, 國立交通大學.
Chojnacka, K. 2010. Biosorption and bioaccumulation–the prospects for practical applications. Environment international, 36(3), 299-307.
Christmann, A., Walter, K., Wentzel, A., Kratzner, R., Kolmar, H. 1999. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. Protein Eng, 12(9), 797-806.
Çolak, F., Atar, N., Olgun, A. 2009. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chemical Engineering Journal, 150(1), 122-130.
Davis, T.A., Volesky, B., Mucci, A. 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water research, 37(18), 4311-4330.
de Francisco, P., Melgar, L.M., Díaz, S., Martín-González, A., Gutiérrez, J.C. 2016. The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors. BMC genomics, 17(1), 1-23.
Delle Site, A. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data, 30(1), 187-439.
Dhankhar, R., Hooda, A. 2011. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental technology, 32(5), 467-491.
Di Toppi, L.S., Gabbrielli, R. 1999. Response to cadmium in higher plants. Environmental and experimental botany, 41(2), 105-130.
Dixit, R., Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shukla, R., Singh, B.P., Rai, J.P., Sharma, P.K., Lade, H. 2015. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189-2212.
Dong, H., Nilsson, L., Kurland, C.G. 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. Journal of bacteriology, 177(6), 1497-1504.
Dong, X.B., Huang, W., Bian, Y.B., Feng, X., Ibrahim, S.A., Shi, D.F., Qiao, X., Liu, Y. 2019. Remediation and Mechanisms of Cadmium Biosorption by a Cadmium-Binding Protein from Lentinula edodes. J Agric Food Chem, 67(41), 11373-11379.
Drechsel, V., Schauer, K., Šrut, M., Höckner, M. 2017. Regulatory plasticity of earthworm wMT-2 gene expression. International journal of molecular sciences, 18(6), 1113.
Dumon-Seignovert, L., Cariot, G., Vuillard, L. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), and C43 (DE3). Protein expression and purification, 37(1), 203-206.
Díaz, S., Amaro, F., Rico, D., Campos, V., Benítez, L., Martín-González, A., Hamilton, E.P., Orias, E., Gutiérrez, J.C. 2007. Tetrahymena metallothioneins fall into two discrete subfamilies. PLoS One, 2(3), e291.
El-Sayed, M.T. 2015. An investigation on tolerance and biosorption potential of Aspergillus awamori ZU JQ 965830.1 TO Cd (II). Annals of microbiology, 65(1), 69-83.
Fasehee, H., Rostami, A., Ramezani, F., Ahmadian, G. 2018. Engineering E. coli cell surface in order to develop a one-step purification method for recombinant proteins. AMB Express, 8(1), 1-10.
Feng, D., Aldrich, C. 2004. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy, 73(1-2), 1-10.
Francisco, J.A., Earhart, C.F., Georgiou, G. 1992. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proceedings of the National Academy of Sciences, 89(7), 2713-2717.
Freudl, R., MacIntyre, S., Degen, M., Henning, U. 1986. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. Journal of molecular biology, 188(3), 491-494.
Freundlich, H. 1907. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
Gerbino, E., Carasi, P., Araujo-Andrade, C., Tymczyszyn, E.E., Gómez-Zavaglia, A. 2015. Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir. World Journal of Microbiology and Biotechnology, 31(4), 583-592.
Graumann, K., Premstaller, A. 2006. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnology Journal: Healthcare Nutrition Technology, 1(2), 164-186.
Hansda, A., Kumar, V. 2016. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 32(10), 1-14.
Hashim, M., Chu, K. 2004. Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 97(2-3), 249-255.
Hassan, S.H., Koutb, M., Nafady, N.A., Hassan, E.A. 2018. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere, 202, 750-756.
He, Y., Ma, W., Li, Y., Liu, J., Jing, W., Wang, L. 2014. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology, 23(1), 56-64.
Ho, Y., McKay, G. 2000. Correlative biosorption equilibria model for a binary batch system. Chemical Engineering Science, 55(4), 817-825.
Hou, Y., Cheng, K., Li, Z., Ma, X., Wei, Y., Zhang, L., Wang, Y. 2015. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water. PLoS One, 10(10), e0140962.
Huang, Y., Keller, A.A. 2015. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res, 80, 159-68.
Hui, C.-Y., Guo, Y., Yang, X.-Q., Zhang, W., Huang, X.-Q. 2018a. Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead (II) adsorption. Biotechnology letters, 40(5), 837-845.
Hui, C., Guo, Y., Zhang, W., Gao, C., Yang, X., Chen, Y., Li, L., Huang, X. 2018b. Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice. Scientific reports, 8(1), 1-12.
Inbaraj, B.S., Chien, J., Ho, G., Yang, J., Chen, B. 2006. Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly (γ-glutamic acid). Biochemical Engineering Journal, 31(3), 204-215.
Kaduková, J., Virčíková, E. 2005. Comparison of differences between copper bioaccumulation and biosorption. Environment International, 31(2), 227-232.
Khan, K.S., Mack, R., Castillo, X., Kaiser, M., Joergensen, R.G. 2016. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma, 271, 115-123.
Khan, Z., Nisar, M.A., Hussain, S.Z., Arshad, M.N., Rehman, A. 2015. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied microbiology and biotechnology, 99(24), 10745-10757.
Kumari, S., Das, S. 2019. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb (II) resistance and bioremediation. Environmental Science and Pollution Research, 26(28), 28763-28774.
Kunkel, T.A., Erie, D.A. 2005. DNA mismatch repair. Annu. Rev. Biochem., 74, 681-710.
Kuroda, K., Ueda, M. 2010. Engineering of microorganisms towards recovery of rare metal ions. Applied microbiology and biotechnology, 87(1), 53-60.
Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
Lee, S.Y. 1996. High cell-density culture of Escherichia coli. Trends in biotechnology, 14(3), 98-105.
Lee, S.Y., Choi, J.H., Xu, Z. 2003. Microbial cell-surface display. Trends in biotechnology, 21(1), 45-52.
Li, D., Xu, X., Yu, H., Han, X. 2017. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of environmental management, 196, 8-15.
Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., Wei, G. 2010. Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of hazardous materials, 179(1-3), 151-159.
Li, P.S., Tao, H.C. 2015. Cell surface engineering of microorganisms towards adsorption of heavy metals. Crit Rev Microbiol, 41(2), 140-9.
Lu, C.-W. 2018. 假單胞菌 Pseudomonas sp. A46 之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討, National Central University.
Ma, W., Li, X., Wang, Q., Ren, Z., Crabbe, M.J.C., Wang, L. 2019. Tandem oligomeric expression of metallothionein enhance heavy metal tolerance and bioaccumulation in Escherichia coli. Ecotoxicology and environmental safety, 181, 301-307.
Malekpour, A., Hajialigol, S., Taher, M.A. 2009. Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite. Journal of Hazardous Materials, 172(1), 229-233.
Mani, D., Kumar, C. 2014. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843-872.
Masindi, V., Muedi, K.L. 2018. Environmental Contamination by Heavy Metals. in: Heavy Metals.
Masoudzadeh, N., Zakeri, F., bagheri Lotfabad, T., Sharafi, H., Masoomi, F., Zahiri, H.S., Ahmadian, G., Noghabi, K.A. 2011. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. Journal of hazardous materials, 197, 190-198.
Mathialagan, T., Viraraghavan, T. 2003. Adsorption of cadmium from aqueous solutions by vermiculite. Separation Science and Technology, 38(1), 57-76.
Mejare, M., Ljung, S., Bülow, L. 1998. Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein engineering, 11(6), 489-494.
Miroux, B., Walker, J.E. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of molecular biology, 260(3), 289-298.
Mohapatra, R.K., Parhi, P.K., Pandey, S., Bindhani, B.K., Thatoi, H., Panda, C.R. 2019. Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. Journal of environmental management, 247, 121-134.
Mus-Veteau, I., Demange, P., Zito, F. 2014. Membrane protein production for structural analysis. Membrane Proteins Production for Structural Analysis, 1-44.
Mwandira, W., Nakashima, K., Togo, Y., Sato, T., Kawasaki, S. 2020. Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere, 246, 125733.
Naik, M.M., Dubey, S.K. 2013. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1-7.
Ndi, O.L., Barton, M. 2012. Resistance determinants of Pseudomonas species from aquaculture in Australia. Journal of Aquaculture Research and Development, 3(1).
Nies, D.H. 1999. Microbial heavy-metal resistance. Applied microbiology and biotechnology, 51(6), 730-750.
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T.C., Waldo, G.S. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79-88.
Pan, X., Chen, Z., Li, L., Rao, W., Xu, Z., Guan, X. 2017. Microbial strategy for potential lead remediation: a review study. World J Microbiol Biotechnol, 33(2), 35.
Park, J.H., Chon, H.T. 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environ Sci Pollut Res Int, 23(12), 11814-22.
Peng, S., Liu, L., Zhao, H., Wang, H., Li, H. 2018. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a. Front Microbiol, 9, 892.
Piccinni, E., Bertaggia, D., Santovito, G., Miceli, C., Kraev, A. 1999. Cadmium metallothionein gene of Tetrahymena pyriformis. Gene, 234(1), 51-59.
Pope, B., Kent, H.M. 1996. High efficiency 5 min transformation of Escherichia coli. Nucleic acids research, 24(3), 536-537.
Qin, J., Song, L., Brim, H., Daly, M.J., Summers, A.O. 2006. Hg (II) sequestration and protection by the MerR metal-binding domain (MBD). Microbiology, 152(3), 709-719.
Qin, W., Zhao, J., Yu, X., Liu, X., Chu, X., Tian, J., Wu, N. 2019. Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Frontiers in microbiology, 10, 278.
Rosano, G.L., Ceccarelli, E.A. 2014a. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology, 5, 172.
Rosano, G.L., Ceccarelli, E.A. 2014b. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 5, 172.
Samuelson, P., Gunneriusson, E., Nygren, P.-Å., Ståhl, S. 2002. Display of proteins on bacteria. Journal of biotechnology, 96(2), 129-154.
Sauge-Merle, S., Lecomte-Pradines, C., Carrier, P., Cuine, S., Dubow, M. 2012. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere, 88(8), 918-24.
Sedlakova-Kadukova, J., Kopcakova, A., Gresakova, L., Godany, A., Pristas, P. 2019. Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicology and environmental safety, 167, 204-211.
Sezonov, G., Joseleau-Petit, D., d′Ari, R. 2007. Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology, 189(23), 8746-8749.
Shiloach, J., Fass, R. 2005. Growing E. coli to high cell density—a historical perspective on method development. Biotechnology advances, 23(5), 345-357.
Shuja, R.N., Shakoori, A.R. 2007. Identification, cloning and sequencing of a novel stress inducible metallothionein gene from locally isolated Tetrahymena tropicalis lahorensis. Gene, 405(1-2), 19-26.
Stano, N.M., Patel, S.S. 2004. T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation. Journal of Biological Chemistry, 279(16), 16136-16143.
Tafakori, V., Ahmadian, G., Amoozegar, M.A. 2012. Surface display of bacterial metallothioneins and a chitin binding domain on Escherichia coli increase cadmium adsorption and cell immobilization. Applied biochemistry and biotechnology, 167(3), 462-473.
Tamás, M.J., Sharma, S.K., Ibstedt, S., Jacobson, T., Christen, P. 2014. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252-267.
Toh, P.P.C., Li, J.J., Yip, G.W.C., Lo, S.L., Guo, C.H., Phan, T.T., Bay, B.H. 2010. Modulation of metallothionein isoforms is associated with collagen deposition in proliferating keloid fibroblasts in vitro. Experimental dermatology, 19(11), 987-993.
Tu, J., Zhao, Q., Wei, L., Yang, Q. 2012. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China. Environ Monit Assess, 184(3), 1645-55.
Valls, M., González-Duarte, R., Atrian, S., De Lorenzo, V. 1998. Bioaccumulation of heavy metals with protein fusions of metallothionein to bacteriol OMPs. Biochimie, 80(10), 855-861.
van Bloois, E., Winter, R.T., Kolmar, H., Fraaije, M.W. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends in biotechnology, 29(2), 79-86.
Vasak, M. 2005. Advances in metallothionein structure and functions. J Trace Elem Med Biol, 19(1), 13-7.
Verma, S., Kuila, A. 2019. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369.
Vijayaraghavan, K., Yun, Y.-S. 2008. Bacterial biosorbents and biosorption. Biotechnology advances, 26(3), 266-291.
Wei, W., Liu, X., Sun, P., Wang, X., Zhu, H., Hong, M., Mao, Z.-W., Zhao, J. 2014. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environmental science & technology, 48(6), 3363-3371.
Wen, S., Chen, X., Xu, F., Sun, H. 2016. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum. PLoS One, 11(12), e0167736.
Zhang, Z., Kuipers, G., Niemiec, L., Baumgarten, T., Slotboom, D.J., de Gier, J.W., Hjelm, A. 2015. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb Cell Fact, 14, 142.
Zhou, H., Xu, J., Wang, W. 2018. Functional analysis of metallothionein MTT5 from Tetrahymena thermophila. Journal of cellular biochemistry, 119(4), 3257-3266.
Zhou, K., Zhou, L., Lim, Q.E., Zou, R., Stephanopoulos, G., Too, H.-P. 2011. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC molecular biology, 12(1), 1-9.
Zimeri, A.M., Dhankher, O.P., McCaig, B., Meagher, R.B. 2005. The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant molecular biology, 58(6), 839-855.
Žnidarič, M.T., Čepeljnik, T., Mazej, D., Cuderman, P., Falnoga, I. 2017. Metal(loid)s Accumulation and Interactions in Tetrahymena thermophila. Geomicrobiology Journal, 34(7), 618-627.
Zolkiewski, M. 1999. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation: a novel multi-chaperone system from Escherichia coli. Journal of Biological Chemistry, 274(40), 28083-28086.
行政院環境保護署土壤及地下水整治網. 2021. 6公頃40多筆農地重金屬超標 環保署報告:灌排未分離惹禍.
翁震炘. 2006. 農作物重金屬污染監測與管制措施.
張淑貞. 2019. 6公頃40多筆農地重金屬超標 環保署報告:灌排未分離惹禍.
許正一, 楊家語. 2019. 從農田重金屬污染整治到土壤煉金術-農業採礦的發想.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明