博碩士論文 109821023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.128.226.85
姓名 劉澤峋(Tze-Shiun Liu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討早期壓力及成年慢性不可預測壓力對恐懼社交轉移的影響
(Investigate the effects of early life stress and adult chronic unpredictable stress on social transfer of fear)
相關論文
★ 探討暴露聚苯乙烯塑膠微粒對小鼠大腦學習與記憶之分子機制與神經發炎的影響★ 探討剔除Dtnbp1基因對於公和母鼠前額葉多巴胺傳遞路徑與社交行為的影響
★ 探討食入及吸入聚苯乙烯塑膠微粒對小鼠行為的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-30以後開放)
摘要(中) 壓力為造成許多精神疾病的潛在因素。恐懼社交轉移(social transfer of fear)是一種透過觀察他人恐懼行為進而導致個體自身產生相同行為的學習過程,此學習能力不但提供個體自我保護機制,使個體未來在相似情境下能夠適應,此能力也是社交認知中重要的一環,當他人遭遇艱困情境時,個體能感同身受,並進一步做出利他的行為(例如: 安慰)。過去研究發現,許多精神疾病患者會有觀察性學習能力的缺陷,然而壓力是否影響恐懼社交轉移尚不清楚。個體從出生到成年皆可受到外在壓力的影響,為了探討不同年紀時遭受壓力是否會影響恐懼社交轉移,在本論文中,我們將壓力區分成幼年早期壓力(early life stress, ELS) 以及成年慢性不可預知壓力(chronic unpredictable stress, CUS),並分成四組: 對照組(control)、早年壓力(ELS)、慢性不可預知壓力(CUS) 以及雙重壓力(double stresses, DS),即早年壓力加上慢性不可預知壓力)。小鼠在出生後第二天開始接受為期13天的早期生活壓力)和/或在成年後接受為期14天的慢性不可預知壓力,結果發現有遭受慢性不可預知壓力的小鼠體重下降以及腎上腺重量增加,顯示慢性不可預知壓力確實對小鼠產生影響。在恐懼社交轉移中,我們讓上述四組的小鼠去觀察從未經歷過壓力(naïve)的陌生小鼠遭受電擊,並分析四組小鼠在觀察當下行為的表現。結果顯示雙重壓力的小鼠比對照組小鼠靜止不動的時間(freezing time)比只承受早期壓力或只承受了慢性壓力的小鼠更少,顯示雙重壓力小鼠無法感受並從陌生小鼠的情境中學習,在觀察性恐懼學習能力上有缺失的現象。我們更進一步去研究與恐懼社交轉移相關腦區的神經元活性,在恐懼社交轉移測試結束後,我們收取大腦組織並切片,利用免疫螢光染色技術以及c-Fos作為神經元的活性標記探討神經細胞被活化的情形,我們觀察到在慢性壓力組別小鼠在基底外側杏仁核(basolateral amygdala,BLA)中的LA被活化的c-Fos細胞的數量與對照組相比,有下降的趨勢。然而腹側海馬迴(ventral hippocampus,VHP)與前扣帶皮層(anterior cingulate cortex,ACC)在c-Fos數量上,卻沒有統計上的差異。根據上述結果顯示,壓力所引起的恐懼社交轉移損傷有一部分可能是與基底外側杏仁核的神經細胞失活(inactivation)有關。
摘要(英) Stress is a risk factor for many mental illnesses. Social transfer of fear is a learning process in which individuals observe fear-related behaviors in others and subsequently develop similar behaviors. This learning ability not only serves as a self-protective mechanism, making individuals to adapt to similar situations in the future, but also plays an important role in social cognition. When others experience distressing situations, individuals can empathize and engage in prosocial behaviors such as providing comfort. Previous studies have found deficits in observational learning abilities among individuals with various mental disorders. However, it remains unclear whether stress affects social transfer of fear. Individuals can experience external stressors throughout their lives, from infancy to adulthood. To investigate whether stress experienced at different ages influences social transfer of fear, this study divided stress into early life stress (ELS) and chronic unpredictable stress (CUS) in adulthood. Four groups were examined: a control group, early life stress (ELS) group, chronic unpredictable stress (CUS) group, and double stress (DS) group (i.e., both early life stress and chronic unpredictable stress). Mice were subjected to early life stress starting from the second day after birth for 13 days, and/or chronic unpredictable stress in adulthood for 14 days. We found that the mice decreased body weight and increased adrenal gland weight after CUS procedure, indicating the impact of CUS on mice. In the social transfer of fear, four groups of mice were placed in a chamber to observe a naïve stranger mouse receiving multiple electric shocks, and their behavioral responses during observation were be analyzed. The results showed that mice in the double stress group exhibited less freezing time (indicating fear response) compared to the ELS and CUS group, suggesting that these mice were unable to perceive and learn from the situation of the unfamiliar mouse, displaying deficits in observational fear learning abilities. Furthermore, we further investigated the neural activity in brain regions associated with social transfer of fear. After the social transfer of feat test, we collected brain for immunofluorescent staining. We used c-Fos as a marker for neuronal activity, to examine the activation of neurons in the basolateral amygdala (BLA), the ventral hippocampus (vHP), and the anterior cingulate cortex (ACC). We observed a decreasing trend in the number of activated c-Fos cells in basolateral amygdala in the CUS group compared to the control group. Collectively, this study suggests that the impairment of social transfer of caused by stress may be partially related to the inactivation of neurons in the basolateral amygdala.
關鍵字(中) ★ 早期壓力
★ 不可預知壓力
★ 恐懼社交轉移
★ 基底外側杏仁核
★ 腹側海馬迴
★ 前扣帶皮層
關鍵字(英) ★ Early life stress
★ Chronic unpredictable stress
★ Social transfer of fear
★ Basolateral Amygdala
★ Ventral hippocampus
★ Anterior cingulate cortex
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
中英文對照表 x
一、緒論 - 1 -
1-1 壓力 - 1 -
1-2 早期壓力 - 2 -
1-3 慢性不可預期壓力 - 3 -
1-4 同理心 - 4 -
1-5 同理心的社交轉移 - 5 -
1-6 前扣帶皮層與基底外側杏仁核神經迴路調控恐懼社交轉移 - 5 -
1-7 腹側海馬迴到基底外側杏仁核調控恐懼社交轉移 - 7 -
1-8 壓力對於前扣帶皮層、基底外側杏仁核、腹側海馬迴的影響 - 9 -
1-9 研究動機與目的 - 10 -
二、材料與方法 - 11 -
2-1 實驗動物 - 11 -
2-2 建立早期壓力動物模型 - 11 -
2-3 建立成年後壓力動物模型 - 12 -
2-4 建立實驗動物模型 - 14 -
2-5 蔗糖水偏好測試實驗(Sucrose preference test) - 14 -
2-6 恐懼社交轉移實驗(Social transfer of fear) - 15 -
2-7 免疫螢光染色 - 16 -
2-8統計分析 - 17 -
三、實驗結果 - 18 -
3-1 慢性壓力對公鼠與母鼠體重、腎上腺重量之影響 - 18 -
3-2 早期壓力導致小鼠承受慢性壓力後的恐懼社交轉移現象降低 - 19 -
3-3 雙重壓力導致小鼠在情景記憶(contextual fear memory)受損 - 21 -
3-4 雙重壓力造成小鼠基底外側杏仁核神經活性c-Fos表達改變 - 22 -
3-5 雙重壓力引起小鼠腹側海馬迴神經活性c-Fos表達改變 - 22 -
3-6 雙重壓力引起小鼠前扣帶皮層神經活性c-Fos表達改變 - 23 -
四、討論 - 24 -
五、結論 - 28 -
參考文獻 - 37 -
附錄 - 44 -
附錄一、免疫螢光染色使用到之抗體 - 44 -
參考文獻 1. El-Sheikh, M. and S.A. Erath, Family conflict, autonomic nervous system functioning, and child adaptation: State of the science and future directions. Development and Psychopathology, 2011. 23(2): p. 703-721.
2. Tsigos, C. and G.P. Chrousos, Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res, 2002. 53(4): p. 865-71.
3. Fischer, C.P. and L.M. Romero, Chronic captivity stress in wild animals is highly species-specific. Conserv Physiol, 2019. 7(1): p. coz093.
4. Criado-Marrero, M., et al., Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci, 2018. 373(1738).
5. Ullah, H., et al., The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients, 2022. 14(13).
6. Lazarou, C., et al., Overview of depression: epidemiology and implications for community nursing practice. Br J Community Nurs, 2011. 16(1): p. 41-7.
7. Yohn, C.N., et al., Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology, 2019. 160: p. 107780.
8. Davis, M.T., et al., Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress (Thousand Oaks), 2017. 1.
9. Yohn, N.L. and J.A. Blendy, Adolescent Chronic Unpredictable Stress Exposure Is a Sensitive Window for Long-Term Changes in Adult Behavior in Mice. Neuropsychopharmacology, 2017. 42(8): p. 1670-1678.
10. Jhang, J., et al., Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun, 2018. 9(1): p. 2744.
11. Choudhary, D., S. Bhattacharyya, and K. Joshi, Body Weight Management in Adults Under Chronic Stress Through Treatment With Ashwagandha Root Extract: A Double-Blind, Randomized, Placebo-Controlled Trial. J Evid Based Complementary Altern Med, 2017. 22(1): p. 96-106.
12. Joëls, M., Corticosteroids and the brain. J Endocrinol, 2018. 238(3): p. R121-r130.
13. Diego, A. and B. Antonella, The Key Role of the Amygdala in Stress, in The Amygdala, F. Barbara, Editor. 2017, IntechOpen: Rijeka. p. Ch. 9.
14. Roozendaal, B., B.S. McEwen, and S. Chattarji, Stress, memory and the amygdala. Nature Reviews Neuroscience, 2009. 10(6): p. 423-433.
15. Roozendaal, B., B.S. McEwen, and S. Chattarji, Stress, memory and the amygdala. Nat Rev Neurosci, 2009. 10(6): p. 423-33.
16. Peña, C.J., et al., Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 2019. 10(1): p. 5098.
17. McGuigan, W.M. and W. Middlemiss, Sexual abuse in childhood and interpersonal violence in adulthood: a cumulative impact on depressive symptoms in women. J Interpers Violence, 2005. 20(10): p. 1271-87.
18. Birnie, M.T., et al., Plasticity of the Reward Circuitry After Early-Life Adversity: Mechanisms and Significance. Biol Psychiatry, 2020. 87(10): p. 875-884.
19. Uchida, S., et al., Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci, 2010. 30(45): p. 15007-18.
20. Norman, R.E., et al., The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med, 2012. 9(11): p. e1001349.
21. Scott, K.M., et al., Childhood maltreatment and DSM-IV adult mental disorders: comparison of prospective and retrospective findings. Br J Psychiatry, 2012. 200(6): p. 469-75.
22. Widom, C.S., K. DuMont, and S.J. Czaja, A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry, 2007. 64(1): p. 49-56.
23. Zhang, Z.Y., et al., Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys. Behav Brain Res, 2016. 306: p. 154-9.
24. Peña, C.J., et al., Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 2017. 356(6343): p. 1185-1188.
25. McLaughlin, K.A., et al., Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychol Med, 2010. 40(10): p. 1647-58.
26. Goodwill, H.L., et al., Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology, 2019. 44(4): p. 711-720.
27. Lee, M.T., et al., Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines, 2022. 10(5).
28. Sanacora, G., Z. Yan, and M. Popoli, The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nature Reviews Neuroscience, 2022. 23(2): p. 86-103.
29. Monteiro, S., et al., An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry, 2015. 6: p. 6.
30. Bondi, C.O., et al., Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology, 2008. 33(2): p. 320-31.
31. Hollis, F., C. Isgor, and M. Kabbaj, The consequences of adolescent chronic unpredictable stress exposure on brain and behavior. Neuroscience, 2013. 249: p. 232-41.
32. Liu, J., et al., The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology, 2007. 148(11): p. 5531-40.
33. Guo, M., et al., Role of the adipose PPARgamma-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry, 2017. 22(7): p. 1056-1068.
34. Higuchi, F., et al., Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci, 2016. 36(27): p. 7253-67.
35. Riess, H., The Science of Empathy. J Patient Exp, 2017. 4(2): p. 74-77.
36. Sanders, J., M. Mayford, and D. Jeste, Empathic fear responses in mice are triggered by recognition of a shared experience. PLoS One, 2013. 8(9): p. e74609.
37. Smith, M.L., N. Asada, and R.C. Malenka, Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science, 2021. 371(6525): p. 153-159.
38. Preston, S.D. and F.B. de Waal, Empathy: Its ultimate and proximate bases. Behav Brain Sci, 2002. 25(1): p. 1-20; discussion 20-71.
39. Bernhardt, B.C. and T. Singer, The neural basis of empathy. Annu Rev Neurosci, 2012. 35: p. 1-23.
40. Bora, E., M. Yucel, and C. Pantelis, Theory of mind impairment in schizophrenia: meta-analysis. Schizophr Res, 2009. 109(1-3): p. 1-9.
41. Ueno, H., et al., Empathic behavior according to the state of others in mice. Brain Behav, 2018. 8(7): p. e00986.
42. Ben-Ami Bartal, I., J. Decety, and P. Mason, Empathy and pro-social behavior in rats. Science, 2011. 334(6061): p. 1427-30.
43. Langford, D.J., et al., Social modulation of pain as evidence for empathy in mice. Science, 2006. 312(5782): p. 1967-70.
44. Burkett, J.P., et al., Oxytocin-dependent consolation behavior in rodents. Science, 2016. 351(6271): p. 375-8.
45. Phillips, H.L., et al., Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron, 2023. 111(6): p. 797-806.e6.
46. Jeon, D., et al., Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci, 2010. 13(4): p. 482-8.
47. Atsak, P., et al., Experience modulates vicarious freezing in rats: a model for empathy. PLoS One, 2011. 6(7): p. e21855.
48. Smith, M.L., et al., Social transfer of pain in mice. Sci Adv, 2016. 2(10): p. e1600855.
49. Olsson, A. and E.A. Phelps, Social learning of fear. Nature Neuroscience, 2007. 10(9): p. 1095-1102.
50. Jeon, D., et al., Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nature Neuroscience, 2010. 13(4): p. 482-488.
51. Haaker, J., et al., Endogenous opioids regulate social threat learning in humans. Nature Communications, 2017. 8(1): p. 15495.
52. Allsop, S.A., et al., Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell, 2018. 173(6): p. 1329-1342.e18.
53. Terranova, J.I., et al., Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022. 110(8): p. 1416-1431.e13.
54. Chen, Q., J.B. Panksepp, and G.P. Lahvis, Empathy Is Moderated by Genetic Background in Mice. PLOS ONE, 2009. 4(2): p. e4387.
55. Keum, S. and H.-S. Shin, Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron, 2019. 104(1): p. 78-86.
56. Zhang, M.M., et al., Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron, 2022. 110(12): p. 1993-2008.e6.
57. Kondrakiewicz, K., et al., Social Transfer of Fear in Rodents. Curr Protoc Neurosci, 2019. 90(1): p. e85.
58. Pardo, J.V., et al., The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A, 1990. 87(1): p. 256-9.
59. Weissman, D.H., et al., Dorsal Anterior Cingulate Cortex Resolves Conflict from Distracting Stimuli by Boosting Attention toward Relevant Events. Cerebral Cortex, 2004. 15(2): p. 229-237.
60. Posner, M.I. and G.J. DiGirolamo. Executive attention: Conflict, target detection, and cognitive control. 1998.
61. Bush, G., P. Luu, and M.I. Posner, Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci, 2000. 4(6): p. 215-222.
62. Cartoni, E., S. Puglisi-Allegra, and G. Baldassarre, The three principles of action: a Pavlovian-instrumental transfer hypothesis. Front Behav Neurosci, 2013. 7: p. 153.
63. Kim, S.W., et al., Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron, 2023. 111(3): p. 418-429.e4.
64. Sahay, A. and R. Hen, Adult hippocampal neurogenesis in depression. Nature Neuroscience, 2007. 10(9): p. 1110-1115.
65. Kim, J., et al., Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry, 2022. 92(2): p. 104-115.
66. Huang, S.H., et al., Association of Increased Amygdala Activity with Stress-Induced Anxiety but not Social Avoidance Behavior in Mice. Neurosci Bull, 2022. 38(1): p. 16-28.
67. Ma, H., et al., Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A, 2021. 118(6).
68. Ito, H., et al., Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology, 2010. 58(4-5): p. 746-57.
69. Reznikov, L.R., L.P. Reagan, and J.R. Fadel, Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res, 2009. 1256: p. 61-8.
70. Lupien, S.J., et al., The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Frontiers in Neuroendocrinology, 2018. 49: p. 91-105.
71. Walter, T.J., R.P. Vetreno, and F.T. Crews, Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res, 2017. 41(12): p. 2066-2081.
72. Hoffman, A.N., et al., Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiology of Learning and Memory, 2014. 112: p. 139-147.
73. Kim, E.J., B. Pellman, and J.J. Kim, Stress effects on the hippocampus: a critical review. Learn Mem, 2015. 22(9): p. 411-6.
74. McEwen, B.S., C. Nasca, and J.D. Gray, Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology, 2016. 41(1): p. 3-23.
75. Misquitta, K.A., et al., Reduced anterior cingulate cortex volume induced by chronic stress correlates with increased behavioral emotionality and decreased synaptic puncta density. Neuropharmacology, 2021. 190: p. 108562.
76. Fee, C., et al., Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience, 2020. 440: p. 113-129.
77. Kim, E.J. and J.J. Kim, Neurocognitive effects of stress: a metaparadigm perspective. Molecular Psychiatry, 2023.
78. Park, A.T., et al., Early childhood stress is associated with blunted development of ventral tegmental area functional connectivity. Dev Cogn Neurosci, 2021. 47: p. 100909.
79. Zhai, Z.W., et al., Childhood trauma moderates inhibitory control and anterior cingulate cortex activation during stress. Neuroimage, 2019. 185: p. 111-118.
80. Cohen, R.A., et al., Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry, 2006. 59(10): p. 975-82.
81. Eachus, H., M.K. Choi, and S. Ryu, The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol, 2021. 9: p. 657591.
82. Heun-Johnson, H. and P. Levitt, Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress, 2018. 8: p. 10-20.
83. Liu, M.-Y., et al., Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 2018. 13(7): p. 1686-1698.
84. Gross, M. and A. Pinhasov, Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res, 2016. 298(Pt B): p. 25-34.
85. Numa, C., et al., Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: Involvement of dopamine D1 receptor in the medial prefrontal cortex. Scientific Reports, 2019. 9(1): p. 16670.
86. Zhao, M.G., et al., Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J Neurosci, 2006. 26(35): p. 8923-30.
87. Cacioppo, J.T., et al., Social isolation. 2011. 1231(1): p. 17-22.
88. Cacioppo, J.T. and L.C. Hawkley, Perceived social isolation and cognition. Trends in Cognitive Sciences, 2009. 13(10): p. 447-454.
89. Pollak, S.D., et al., Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Development, 2010. 81(1): p. 224-236.
90. Dutta, S. and P. Sengupta, Men and mice: Relating their ages. Life Sciences, 2016. 152: p. 244-248.
91. Hu, P., et al., Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Translational Psychiatry, 2020. 10(1): p. 396.
92. Liu, Y.W., et al., Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res, 2016. 1631: p. 1-12.
93. Chronister, B.N., et al., Testosterone, estradiol, DHEA and cortisol in relation to anxiety and depression scores in adolescents. J Affect Disord, 2021. 294: p. 838-846.
94. Li, D., et al., Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab, 2023. 35(4): p. 685-694.e5.
95. Markov, D.D., Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci, 2022. 12(10).
96. Kinlein, S.A., et al., Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 2019. 102: p. 248-255.
97. Berger, I., et al., The adrenal gland in stress – Adaptation on a cellular level. The Journal of Steroid Biochemistry and Molecular Biology, 2019. 190: p. 198-206.
98. Ulrich-Lai, Y.M., et al., Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab, 2006. 291(5): p. E965-73.
99. Millhouse, O.E. and J. DeOlmos, Neuronal configurations in lateral and basolateral amygdala. Neuroscience, 1983. 10(4): p. 1269-300.
100. Xiao, Q., X. Xu, and J. Tu, Chronic optogenetic manipulation of basolateral amygdala astrocytes rescues stress-induced anxiety. Biochemical and Biophysical Research Communications, 2020. 533(4): p. 657-664.
101. Meyza, K., et al., Neuronal correlates of asocial behavior in a BTBR T (+) Itpr3(tf)/J mouse model of autism. Front Behav Neurosci, 2015. 9: p. 199.
102. McQuade, J.M., et al., Deficient hippocampal c-fos expression results in reduced anxiety and altered response to chronic stress in female mice. Neurosci Lett, 2006. 403(1-2): p. 125-30.
103. Moench, K.M., M.R. Breach, and C.L. Wellman, Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression. Neurobiol Stress, 2019. 10: p. 100147.
指導教授 黃佳瑜(Chia-Yu Huang) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明