博碩士論文 109827005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.222.148.124
姓名 許雅淩(XU,YA-LING)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 融合影像與加速度感測訊號的人體上部運動特徵視覺化之機械學習模型
(Machine Learning Models for Visualization of Upper Limb Motion of Human Bodies Using Features of Image Fusion and Acceleration Sensing Signals)
相關論文
★ 基於密度泛函理論的人體姿勢模態識別之非監督學習方法★ 舌紋分析的動態曝光方法
★ 整合Modbus與Websocket協定之聯網醫療資料採集嵌入式系統研製★ 比較 U-net 神經網路與資料密度泛函方法對於磁共振影像分割的效能
★ 使用YOLO架構在標準環境中進行動態舌頭影像偵測及切割★ 使用YOLO辨識金屬表面瑕疵
★ 使用深度學習結合快速資 料密度泛函轉換進行自動腦瘤切割★ 使用強化學習模擬抑制新冠肺炎疫情
★ 組建細胞培養人造磁場微實驗平台★ 標準CMOS製程之新型微機電麥克風驗證、濕式蝕刻加工製程開發暨量產製程研究
★ 靜磁場於癌細胞的生物效應★ 關節角度監測裝置應用在日常膝關節活動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的為開發上肢部分動作分析之機械學習數學模型。此動作分析方法是用於解析使用者在進行各項動作時的上部身體姿勢,旨在消除多餘動作及矯正錯誤姿勢,來達到減輕疲勞、避免受傷及身體復健的功效,可用於醫療保健及身體康復。而除了探討臨床議題外,精細動作分析亦為當下運動科學研究之主要範疇。藉由量測、紀錄並分析解構特定運動動作特徵,提供其動作連動性、肌肉使用順序、旋轉角度以及施力狀態等資訊給予教練以及醫生對運動員狀況進行評估。提供運動員各種最適當化的各項肌肉與骨頭之操作指標,以期避免運動傷害並在不傷害身體之前提下增強其運動表現。目前在運動科學中的動作分析研究主要是使用光學動作捕捉系統及最近開始盛行的可穿戴慣性測量單元(Inertial measurement unit,IMU)完成。但上述技術所使用的設備都較為昂貴,且光學動作捕捉系統還需在專門的實驗室環境中操作。因此本研究之主要研究架構建立於降低科學動作分析的設備成本及使用者操作位置與運動範圍限制的需求上。本研究方法主旨在於完成即時性的人體上部運動分析,其中僅使用三個加速度感測器及兩台攝影機完成。架構上使用加速度感測系統偵測人體肩肘的移動及轉動軌跡,同時兩台視野正交的攝影機會捕捉人體特定定位點之動作。而我們發展出利用非線性迴歸模型,先分別將攝影機捕捉的影像動作以及加速度感測數據分別建模。爾後將加速度模型映射至影像模型空間中,以獲得加速度模型與影像模型之同構關係。最後利用特定定位點的物理長度來校正影像空間中的像素距離,因此便可以獲得加速度數據點之間的物理長度關係。因此運用本研究當中的機械學習提供之身體上部分運動模型,可以讓醫生判斷患者的肌肉及骨骼狀況,也可用於提供治療師作為是否為正確的運動姿勢的依據。
摘要(英) The main purpose of this research is to develop a machine learning mathematical model for the analysis of upper limb movements. This action analysis method is used to analyze the upper body posture of the user when performing various actions. It aims to eliminate redundant actions and correct wrong postures to achieve the effect of reducing fatigue, avoiding injury, and physical rehabilitation. It can be used in medical care and physical recovery. In addition to discussing clinical issues, fine motor analysis is also a major area of current sports science research. Measuring, recording, analyzing, and deconstructing the characteristics of specific sports movements, provides information such as movement linkage, muscle use sequence, rotation angle, and state of exertion for coaches and doctors to evaluate the athletes′ condition. Athletes can be provided with the most appropriate operating indicators of various muscles and bones to help them avoid sports injuries and enhance their performance within the physiological endurance. At present, motion analysis research in sports science is mainly done using optical motion capture systems and the recently popular wearable inertial measurement unit (IMU). However, the equipment used in the above techniques is relatively expensive, and the optical motion capture system also needs to be operated in a specialized laboratory environment. Therefore, the main research framework of this study is based on the need to reduce the equipment cost of scientific motion analysis and for ameliorating the limitation of the user′s operating position and range of motion. The main purpose of this research method is to perform real-time upper body motion analysis using only three accelerometers and two cameras. The acceleration sensing system is used to detect the movement and rotation trajectory of the human shoulder and elbow, and at the same time, two cameras with orthogonal fields of view will capture the movement of the specific positioning point of the human body. We developed a nonlinear regression model to model the image motion captured by the camera and the acceleration sensing data separately. Then, the acceleration model is mapped into the image model space to obtain the isomorphic relationship between the acceleration model and the image model. Finally, the pixel distance in the image space is corrected by the physical length of the specific positioning point, so the physical length relationship between the acceleration data points can be obtained. Therefore, the motion model of the upper body provided by the machine learning in this study can allow doctors to judge the patient′s muscle and bone condition, and can also be used to provide therapists with a basis for correct exercise posture.
關鍵字(中) ★ 機械學習建模
★ 人體運動特徵視覺化
關鍵字(英)
論文目次 目 錄
頁次
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 vii
一、 緒論 1
1-1 智慧動作分析技術的需求 1
1-2 研究目的及方法改進 3
二、 實驗設計與理論架構 4
2-1 實驗設計 4
2-2 加速度感測器物理模型與行為建模 6
2-3 數據分析原理 7
三、 研究內容與執行技術 12
3-1 實驗前處理 12
3-2 站立實驗設計與分析 13 3-3 側躺實驗設計與分析 18
四、 結論 33
五、參考文獻 34

圖目錄 頁次
圖1:實驗設計場景及實際感測器安裝圖 5
圖2:運動實驗的兩種姿勢設計圖 6
圖3:ADXL335三軸重力加速度感測器 6
圖4:加速度感測器內部基礎結構簡圖及物理行為模型 7
圖5:加速度感測數據曲線圖 7
圖6:加速度感測器數據前處理 12
圖7:站立右上肢運動感測器三維原始數據圖 13
圖8:站立右上肢運動加速度三維數據映射以及維度整合圖 14
圖9:站立抬手角度顯示圖 15
圖10:站立x軸方向位移-時間關係圖與速度-時間關係圖 16
圖11:站立y軸方向位移-時間關係圖與速度-時間關係圖 16
圖12:站立z軸方向位移-時間關係圖與速度-時間關係圖 17
圖13:站立三維方向速度-時間關係圖 17
圖14:側躺右上肢運動感測器三維原始數據圖 18
圖15:橢圓擬合結果 19
圖16:移動最小二乘法擬合結果 20
圖17:分隔法擬合成果 21
圖18:側躺擷取影像 22
圖19:無處理側躺紅球影像追蹤後成果 22
圖20:影像處理側躺紅球影像追蹤後成果 23
圖21:紅球的移動空間視野修剪 24
圖22:手肘旋轉造成的紅球運動軌跡消失技術問題 24
圖23:水平映射方法對於紅球軌跡進行補值 25
圖24:側躺補缺值建模程序 26
圖25:側躺右上肢運動加速度三維數據映射及維度整合與校正前後對比圖 27
圖26:側躺抬手角度顯示 28
圖27:側躺x軸方向的位移-時間關係圖,速度-時間關係圖,及姿勢校正前後圖 29
圖28:側躺y軸方向的位移-時間關係圖,速度-時間關係圖,及姿勢校正前後圖 30
圖29:側躺z軸方向的位移-時間關係圖,速度-時間關係圖,及姿勢校正前後圖 31
圖30:側躺三維方向的速度-時間關係圖,及姿勢校正前後圖 32

表目錄 頁次
表1:各類提供影像辨識精確的方法與比較 23
參考文獻 [1] Lapinski, Michael et al. “A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching.” Sensors (Basel, Switzerland) vol. 19,17 3637. 21 Aug. 2019, doi:10.3390/s19173637
[2] Vellios, Evan E et al. “Technology Used in the Prevention and Treatment of Shoulder and Elbow Injuries in the Overhead Athlete.” Current reviews in musculoskeletal medicine vol. 13,4 (2020): 472-478. doi:10.1007/s12178-020-09645-9
[3] Rigoni, Michael et al. “Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study.” Sensors (Basel, Switzerland) vol. 19,8 1781. 13 Apr. 2019, doi:10.3390/s19081781
[4] Rawashdeh, Samir A et al. “Wearable IMU for Shoulder Injury Prevention in Overhead Sports.” Sensors (Basel, Switzerland) vol. 16,11 1847. 3 Nov. 2016, doi:10.3390/s16111847
[5] Ancans, Armands et al. “Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare.” Sensors (Basel, Switzerland) vol. 21,6 2068. 16 Mar. 2021, doi:10.3390/s21062068
[6] Toshev, Alexander et al. “DeepPose: Human Pose Estimation via Deep Neural Networks.” IEEE Conference on Computer Vision and Pattern Recognition vol. 25 Sep. 2014, doi: 10.1109/CVPR.2014.214
[7] Adesida, Yewande et al. “Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review.” Sensors (Basel, Switzerland) vol. 19,7 1597. 2 Apr. 2019, doi:10.3390/s19071597
[8] Lui, Jordan, and Carlo Menon. “Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?.” Biomedical engineering online vol. 18,1 53. 7 May. 2019, doi:10.1186/s12938-019-0677-7
[9] Filippeschi, Alessandro et al. “Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.” Sensors (Basel, Switzerland) vol. 17,6 1257. 1 Jun. 2017, doi:10.3390/s17061257
[10] González-Alonso, Javier et al. “Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar.” Sensors (Basel, Switzerland) vol. 21,19 6642. 6 Oct. 2021, doi:10.3390/s21196642
[11] Sabatini, Angelo Maria. “Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.” Sensors (Basel, Switzerland) vol. 11,2 (2011): 1489-525. doi:10.3390/s110201489
[12] Horenstein, Rachel E et al. “Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports.” Sensors (Basel, Switzerland) vol. 20,17 4970. 2 Sep. 2020, doi:10.3390/s20174970
[13] Miezal, Markus et al. “On Inertial Body Tracking in the Presence of Model Calibration Errors.” Sensors (Basel, Switzerland) vol. 16,7 1132. 22 Jul. 2016, doi:10.3390/s16071132
[14] Slade, Patrick et al. “An Open-Source and Wearable System for Measuring 3D Human Motion in Real-Time.” IEEE transactions on bio-medical engineering vol. 69,2 (2022): 678-688. doi:10.1109/TBME.2021.3103201
[15] Gong, Wenjuan et al. “Human Pose Estimation from Monocular Images: A Comprehensive Survey.” Sensors (Basel, Switzerland) vol. 16,12 1966. 25 Nov. 2016, doi: 10.3390/s16121966
[16] Wang, Hao et al. “LHPE-nets: A lightweight 2D and 3D human pose estimation model with well-structural deep networks and multi-view pose sample simplification method.” PLoS One vol.17.2 (2022): e0264302. doi: 10.1371/journal.pone.0264302
[17] GU Tian-qi, ZHANG Lei, JI Shi-jun, TAN Xiao-dan, HU Ming. Curve fitting method for closed discrete points. Journal of Jilin University Engineering and Technology Edition, vol. 45, pp.437-441, 2015.
[18] ADXL335 三軸重力加速度感測器規格書:https://www.mouser.tw/datasheet/2/609/ADXL335-1503897.pdf
指導教授 陳健章 審核日期 2022-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明