博碩士論文 109827018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.139.50
姓名 廖子瑜(Zi-Yu Liao)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 可功能化編碼之表面增強拉曼光譜標籤探針於高靈敏與多重生醫分子檢測
(Encodable Functional SERS Tag for Highly Sensitive and Multiplex Biomolecule Detection)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 離子液體應用於脂溶性蛋白之快速萃取及檢測
★ 深度學習計算成像系統於生物醫學顯微影像之重建與分析★ 磁電化學免疫分析系統 於新型冠狀病毒感染檢測之研製
★ 計算照明高通量生物醫學成像顯微鏡系統★ 表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測
★ 菲涅耳數位全像顯微系統於全血細胞分析之研製★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用
★ 基於深度學習之高通量顯微影像系統於血液分析★ 高通量計算顯微影像系統之研製於生物醫學成像與分析
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用★ 鼻咽癌外泌小體藉由EB病毒潛伏膜蛋白1促進巨噬細胞免疫抑制型分化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在生化與臨床醫學等項目,透過標識分子進行檢測與分析是很重要的一種方式,而可實行於多重與高通量檢測中之標識分子可有效的提高檢測分析之功能性與量能。其中,使用編碼粒子做為光譜標記之檢測方法擔任十分重要之角色。為此,本研究論文發展出具功能化編碼之表面增強拉曼光譜標籤探針並將其於生化與臨床醫學中應用。
本研究利用拉曼散射中所展現的材料光譜獨特性,結合表面增強拉曼光譜機制,研發具有功能化編碼與可定量之標籤探針。此新型光學奈米標識分子探針,是採用特定的標記分子與貴金屬奈米粒子結合,可產生強烈的特徵拉曼光譜訊號,並藉由此獨特的光譜訊號完成編碼特性,使其具有高靈敏度、多重分析能力與可定量等獨特優點與特性。
本研究已成功完成一系列功能化之表面增強拉曼光譜標籤的合成與分析,包含合成多種編碼標籤分子以及利用不同型態之奈米材料製備出光譜增強奈米粒子,並以生物分子免疫反應之測試為例,驗證了本研究所提出之方法與系統的可行性。此研究成果提供未來在多重與高通量檢測方式之選擇外,也拓展了使用編碼粒子做為光譜標記之相關應用層面,可望在生物化學分析與臨床醫學上有更好、更廣泛的應用。
摘要(英) Encoded particles are one of the most powerful approaches for multiplex and high-throughput detection. The sensitive and specific analysis of biomolecules from complex mixtures is essential in the field of clinical diagnostics. The presence and progression of disease generally involve a multitude of different biomolecules. Thus detecting multiple events in tandem can reduce time and cost and obtain significantly more information from a small clinical sample.
In this study, we report a universal, inexpensive, high sensitivity, and encodable synthetic protocol for fabricating a series of SERS-encoded nanoparticles. As a newly emerging optical nanoprobe, SERS-encoded nanoparticles synthesize through attaching intrinsically strong Raman scattering molecules to the surface of plasmon-resonant gold nanoparticles. It can provide strongly enhanced spectroscopic signals due to the enhancement of local optical fields at metal surfaces. With these distinctive spectroscopic signals, it is of great use in biochemical detection and analysis. The advantage including high sensitivity, easily quantitative analysis, great multiplexing capacity, and so on.
Until now, our study has successfully fabricated a series of encodable functional SERS-active nanoprobes, including SERS-encoded nanoparticle, nanoaggregated, nanostars. Furthermore, through the proof-of-concept with biomolecule immune testing, the encodable functional SERS-active nanoprobes can be used for multiplex biomolecule detection. We anticipate that this novel optical nanoprobes method may expand the application of encoded particles in optical encoding systems, which is promising in biochemical multiplex and high-throughput detection.
關鍵字(中) ★ 表面增強拉曼光譜
★ 編碼粒子
★ 新型光學奈米探針
★ 多重與高通量檢測
關鍵字(英) ★ Surface-enhanced Raman spectroscopy
★ Encoded Particles
★ Novel Optical Nanoprobes
★ Multiplex and High-throughput Detection
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
專有名詞縮寫對照表 x
符號說明 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 拉曼散射 3
2-1-1 拉曼散射歷史 3
2-1-2 拉曼散射原理 4
2-2 表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS) 8
2-2-1 表面增強拉曼散射歷史 8
2-2-2 表面增強拉曼散射原理 9
2-3 表面增強拉曼光譜標籤探針 11
2-3-1 背景 11
2-3-2 表面增強拉曼光譜標籤探針之組成 13
2-3-3 表面增強拉曼光譜標籤探針用於生物醫學相關之檢測 14
第三章 研究材料與方法 17
3-1 實驗方法與架構 17
3-2 實驗儀器與藥品 19
3-2-1 藥品 19
3-2-2 儀器 20
3-3 系統性、功能化編碼方式 21
3-4 水相金奈米粒子 (Gold nanoparticles) 23
3-4-1 實驗原理 23
3-4-2 水相金奈米合成步驟 24
3-5 單顆SERS標籤探針 25
3-5-1 SERS標籤合成原理 25
3-5-2 SERS標籤表面生化修飾原理 27
3-5-3 單顆SERS標籤合成步驟 30
3-5-4 單顆SERS標籤表面生化修飾步驟 32
3-6 多顆聚集型SERS標籤探針 33
3-6-1 實驗原理 33
3-6-2 多顆聚集型SERS標籤合成步驟 34
3-7 星形SERS標籤 36
3-7-1 實驗原理 36
3-7-2 星形金奈米粒子(Gold Nanostars)合成步驟 38
3-7-3 星形SERS標籤合成步驟 39
3-8 SERS標籤探針免疫反應之測試 40
3-8-1 實驗原理 40
3-8-2 Polystyrene microspheres (PS球)表面修飾步驟 41
3-8-3 SERS標籤探針和PS球反應步驟 42
3-9 實驗檢測系統 43
3-9-1 顯微拉曼光譜儀 43
第四章 研究結果分析與討論 44
4-1 水相金奈米粒子之鑑定 44
4-1-1 可見光吸收光譜及TEM影像圖 44
4-1-2 粒徑分析結果 46
4-2 單顆SERS標籤編碼粒子之鑑定 47
4-2-1 可見光吸收光譜 47
4-2-2 TEM影像圖及粒徑分析結果 47
4-2-3 SERS光譜圖 51
4-3 多顆SERS標籤之鑑定 53
4-3-1 可見光吸收光譜 53
4-3-2 TEM影像圖及粒徑分析結果 53
4-3-3 SERS光譜圖 56
4-4 星形SERS標籤之鑑定 58
4-4-1 可見光吸收光譜 58
4-4-2 TEM影像圖及粒徑分析結果 59
4-4-3 SERS光譜圖 60
4-5 SERS標籤探針免疫反應測試之鑑定 61
4-5-1 PS球之鑑定 62
4-5-2 10μm PS- AuNP@TP@SiO2之鑑定 63
4-5-3 6μm PS- AuNP@4-ATP@SiO2之鑑定 64
4-5-4 2μm PS- AuNP@4-FlTP@SiO2之鑑定 65
第五章 結論 66
第六章 未來展望 66
參考文獻 Reference 67
參考文獻 1. Laing, S., K. Gracie, and K.J.C.S.R. Faulds, Multiplex in vitro detection using SERS. 2016. 45(7): p. 1901-1918.
2. Amendola, V., et al., SERS labels for quantitative assays: application to the quantification of gold nanoparticles uptaken by macrophage cells. 2011. 3(4): p. 849-856.
3. Ellis, D.I., et al., Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. 2013. 138(14): p. 3871-3884.
4. Gautam, R., Vibrational microspectroscopic studies of biomedical conditions using model systems. 2018.
5. Smith, G.D. and R.J.J.S.i.C. Clark, Raman microscopy in art history and conservation science. 2001. 46(sup1): p. 92-106.
6. Tarcea, N., et al., Raman spectroscopy—A powerful tool for in situ planetary science, in Strategies of life detection. 2008, Springer. p. 281-292.
7. Campion, A. and P.J.C.s.r. Kambhampati, Surface-enhanced Raman scattering. 1998. 27(4): p. 241-250.
8. Chalabi, H., D. Schoen, and M.L.J.N.l. Brongersma, Hot-electron photodetection with a plasmonic nanostripe antenna. 2014. 14(3): p. 1374-1380.
9. Yi, S.-S., et al., Non-noble metals applied to solar water splitting. 2018. 11(11): p. 3128-3156.
10. Hakonen, A., et al., Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. 2015. 893: p. 1-13.
11. Leng, Y., et al., Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chemical Society Reviews, 2015. 44(15): p. 5552-5595.
12. Li, J., et al., A universal strategy for the one-pot synthesis of SERS tags. Nanoscale, 2018. 10(17): p. 8292-8297.
13. Mir-Simon, B., et al., Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chemistry of Materials, 2015. 27(3): p. 950-958.
14. Shan, B., et al., Novel SERS labels: Rational design, functional integration and biomedical applications. Coordination Chemistry Reviews, 2018. 371: p. 11-37.
15. Wang, Y.W., et al., Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches. Nanotheranostics, 2017. 1(4): p. 369.
16. Wang, Y., B. Yan, and L. Chen, SERS tags: novel optical nanoprobes for bioanalysis. Chemical reviews, 2013. 113(3): p. 1391-1428.
17. Su, X., et al., Composite organic− inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano letters, 2005. 5(1): p. 49-54.
18. Wang, C., et al., Monodispersed gold Nanorod‐embedded silica particles as novel Raman labels for biosensing. Advanced Functional Materials, 2008. 18(2): p. 355-361.
19. Lin, H.Y., et al., On‐line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small, 2014. 10(22): p. 4700-4710.
20. Sha, M.Y., et al., Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. Journal of the American Chemical Society, 2008. 130(51): p. 17214-17215.
21. Wu, P., et al., Aptamer-guided silver–gold bimetallic nanostructures with highly active surface-enhanced raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Analytical chemistry, 2012. 84(18): p. 7692-7699.
22. Kimling, J., et al., Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 2006. 110(32): p. 15700-15707.
23. Liu, G., et al., Continuous flow controlled synthesis of gold nanoparticles using pulsed mixing microfluidic system. Advances in Materials Science and Engineering, 2015. 2015.
24. JoRDAN, R., New Strategies in the Synthesis of Grafted Supports. Polymeric Materials in Organic Synthesis and Catalysis, 2003: p. 372.
25. Stöber, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 1968. 26(1): p. 62-69.
26. Vashist, S.K., Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics, 2012. 2(3): p. 23-33.
27. Atta, S., T.V. Tsoulos, and L. Fabris, Shaping gold nanostar electric fields for surface-enhanced Raman spectroscopy enhancement via silica coating and selective etching. The Journal of Physical Chemistry C, 2016. 120(37): p. 20749-20758.
28. Amjadi, M. and Z. Abolghasemi-Fakhri, Gold nanostar-enhanced chemiluminescence probe for highly sensitive detection of Cu (II) ions. Sensors and Actuators B: Chemical, 2018. 257: p. 629-634.
29. Rodríguez-Lorenzo, L., et al., Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. Journal of the American Chemical Society, 2009. 131(13): p. 4616-4618.
30. Das, R.P., et al., A pH-controlled one-pot synthesis of gold nanostars by using a zwitterionic protein hydrolysate (gelatin): an enhanced radiosensitization of cancer cells. New Journal of Chemistry, 2021. 45(30): p. 13271-13279.
31. Alibart, F., et al., High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012. 23(7): p. 075201.
32. Madzharova, F., Z. Heiner, and J. Kneipp, Surface-enhanced hyper raman spectra of aromatic thiols on gold and silver nanoparticles. The Journal of Physical Chemistry C, 2020. 124(11): p. 6233-6241.
33. Szafranski, C.A., et al., Surface-enhanced Raman spectroscopy of halogenated aromatic thiols on gold electrodes. Langmuir, 1998. 14(13): p. 3580-3589.
34. Nyquist, R.A., Interpreting infrared, Raman, and nuclear magnetic resonance spectra. 2001: Academic Press.
35. Wadayama, T., et al., Infrared absorption enhancement of octadecanethiol on colloidal silver particles. Materials Transactions, 2004. 45(1): p. 86-91.
36. Masango, S.S., et al., Probing the chemistry of alumina atomic layer deposition using operando surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 2016. 120(7): p. 3822-3833.
37. Scott, B.L. and K.T. Carron, Dynamic raman scattering studies of coated gold nanoparticles: 4-mercaptopyridine, 4-mercaptophenol, and benzenethiol. The Journal of Physical Chemistry C, 2016. 120(37): p. 20905-20913.
38. Li, R., et al., Vibrational spectroscopy and density functional theory study of 4-mercaptophenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 122: p. 698-703.
39. Cha, M.G., et al., High-throughput multiplex analysis method based on Fluorescence–SERS quantum Dot-Embedded silver bumpy nanoprobes. Applied Surface Science, 2021. 558: p. 149787.
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明