博碩士論文 109827025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.133.87.156
姓名 楊惟安(Wei-An Yang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 使用深度學習結合快速資 料密度泛函轉換進行自動腦瘤切割
(Automatic Brain Tumor Segmentation Using Deep Learning With Fast Data Density Functional Transform)
相關論文
★ 基於密度泛函理論的人體姿勢模態識別之非監督學習方法★ 舌紋分析的動態曝光方法
★ 整合Modbus與Websocket協定之聯網醫療資料採集嵌入式系統研製★ 比較 U-net 神經網路與資料密度泛函方法對於磁共振影像分割的效能
★ 使用YOLO架構在標準環境中進行動態舌頭影像偵測及切割★ 使用YOLO辨識金屬表面瑕疵
★ 使用強化學習模擬抑制新冠肺炎疫情★ 融合影像與加速度感測訊號的人體上部運動特徵視覺化之機械學習模型
★ 組建細胞培養人造磁場微實驗平台★ 標準CMOS製程之新型微機電麥克風驗證、濕式蝕刻加工製程開發暨量產製程研究
★ 靜磁場於癌細胞的生物效應★ 關節角度監測裝置應用在日常膝關節活動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於提高治療的可能性和提高患者的生存率來說,腦瘤的早期診斷扮演重要角色,而醫學影像處理中腦瘤的分割對其治療和預防至關重要。此外手動對從臨床端取得的大量 核磁共振造影(MRI)影像標記腦瘤位置並進行疾病診斷是一項艱鉅且耗時的任務,因此開始有了對自動腦腫瘤圖像分割工具的需求。在本文中,我們透過研究圖像的拓樸異質性,提出了一種非監督式的影像處理方法並與新穎的深度學習模型結合進行自動腦腫瘤圖像分割。為了同時解決基於主動輪廓的模型的問題,同時繼承其緊湊建模形式的特點,我們利用以神經網路為基礎的學習機制來改良原始的資料密度泛函轉換(DDFT)。首先,我們通過導入快速傅立葉來代替原始的系統能量估計,在數學上增強了 DDFT 的計算性能。另外我們在DDFT中加入了如同梯度下降法的學習機制來更新DDFT中的能量項。在快速資料密度泛函轉換(fDDFT)框架下,圖像大小為256*256腫瘤影像分割的平均計算時間為0.09 秒,除了計算效能的提升,定位未知腫瘤區的能力也展現了fDDFT的獨有特性。在研究中我們將 fDDFT 作為影像的預處理方法並和稱為維度融合U-Net的3D編碼器-解碼器架構結合,構建了一個用於自動腦瘤切割任務的深度學習模型,實現了具有競爭力的模型表現,對於BraTS2020所提供的公開資料集,我們在全腫瘤、腫瘤核、增強腫瘤和腫瘤水腫的Dice分數分別為92.21、87.60、86.59和83.62。最後fDDFT 提取影像特徵的靈活性以計算效能展現了該方法可以再擴展的可能性。
摘要(英) Early diagnosis of brain tumors plays a vital role in improving treatment possibilities and increases the survival rate of the patients. Hence, the semantic segmentation of a brain tumor in medical image processing is paramount for its treatment and prevention of recurrence. In addition, labeling the brain tumors by hand for disease diagnoses from many magnetic resonance images generated in the clinical routine is a complex and time-consuming task. There is a need for automatic brain tumor image segmentation. In the article, we propose a semi-unsupervised preprocessing method combined with a novel deep learning model for automatic brain tumor image segmentation by studying the topological heterogeneity of images. To simultaneously solve the problems of active contour-based models while reducing computational complexity during parameter training, we integrate the benefits of these techniques by combining the learning process from neural network-based models with the data density functional transform (DDFT). First, we mathematically reinforce the computational performance of DDFT by introducing the fast Fourier transform to replace the original energy estimations of a data system. Then we utilize a learning process like gradient descent to modify the system energy of a data system adaptively. Under the framework of fast DDFT (fDDFT), the average computational time for each image, whose size is 256*256 pixels, in the BraTS2020 dataset is about 0.09 seconds. The ability to localize unknown areas, which is the primary purpose of this research, also shows the unique capability of fDDFT framework. Furthermore, we combine fDDFT and a 3D encoder-decoder architecture called dimension fusion U-Net to build a robust deep learning pipeline that achieves competitive performance with Dice scores of 92.21, 87.60, 86.59, 83.62 for the whole tumor, tumor core, enhancing tumor and edema, respectively. The flexibility of fDDFT for extracting features from anywhere of images, along with its computational simplicity, reveals the possibility of model extension.
關鍵字(中) ★ 自動腦瘤切割
★ 深度學習
★ 快速資料密度泛函轉換
關鍵字(英) ★ Automatic Brain Tumor Segmentation
★ Deep Learning
★ Fast Data Density Functional Transform
論文目次 目 錄
中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
致謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… vi
表目錄 ……………………………………………………………… ix
一、 緒論………………………………………………………… 1
1-1 腦瘤………………………………………………………… 1
1-1-1 腦瘤的定義………………………………………………… 1
1-1-2 腦瘤的類型………………………………………………… 2
1-1-3 腦瘤的發生率與死亡率…………………………………… 4
1-1-4 腦瘤的症狀………………………………………………… 5
1-1-5 腦瘤的診斷………………………………………………… 6
1-1-6 腦瘤的治療………………………………………………… 6
1-2 深度學習簡介與其在生醫工程之應用…………………… 8

二、 自動腦腫瘤切割任務的限制及相關技術………………… 19
2-1 自動腦腫瘤切割任務的限制……………………………… 19
2-1-1 標記誤差…………………………………………………… 19
2-1-2 資料中目標物與背景不均等……………………………… 19
2-1-3 腫瘤位置的不確定性……………………………………… 20
2-1-4 腫瘤表現形態的不確定性………………………………… 21
2-1-5 醫療影像相對解析度低…………………………………… 21
2-2. 自動腦腫瘤切割任務的相關技術………………………… 22

三、 研究內容與方法…………………………………………… 30
3-1 資料集……………………………………………………… 30
3-2 預處理使用之非監督式學習機制………………………… 32
3-2-1 資料密度泛函轉換………………………………………… 32
3-2-2 快速資料密度泛函轉換…………………………………… 39
3-2-3 費米迪拉克校正函式……………………………………… 42
3-3 資料預處理實驗架構……………………………………… 44
3-4 深度學習網路架構………………………………………… 51
3-4-1 實驗一:使用U-Net實作全腦瘤切割…………………… 51
3-4-2 實驗二:使用D U-Net實作多類別腦瘤切割…………… 57
3-5 損失函數…………………………………………………… 60
3-6 資料增強…………………………………………………… 61
3-7 訓練細節…………………………………………………… 63
四、 結果與討論………………………………………………… 66
五、 結論………………………………………………………… 83
參考文獻 ……………………………………………………………… 84




參考文獻 參考文獻
[1] 中華民國 108 年 癌症登記報告 CANCER REGISTRY ANNUAL REPORT, 2019 TAIWAN ,中華民國 110 年 12 月出版
[2] 榮總內科部神經內科工作手冊http://intm.vghtc.gov.tw/imd/ch/神經內科工作手冊.pdf
[3] De Fauw, Jeffrey, et al. "Clinically applicable deep learning for diagnosis and referral in retinal disease." Nature medicine 24.9 (2018): 1342-1350.
[4] Wang, Linda, Zhong Qiu Lin, and Alexander Wong. "Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images." Scientific Reports 10.1 (2020): 1-12.
[5] McKinney, Scott Mayer, et al. "International evaluation of an AI system for breast cancer screening." Nature 577.7788 (2020): 89-94.
[6] Esteva, A., Kuprel, B., Novoa, R. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056.
[7] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
[8] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.
[9] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015).
[10] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[11] Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[12] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
[13] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).
[14] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
[15] M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh and M. S. Silbiger, "Automatic tumor segmentation using knowledge-based techniques," in IEEE Transactions on Medical Imaging, vol. 17, no. 2, pp. 187-201, April 1998, doi: 10.1109/42.700731.
[16] M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh and M. S. Silbiger, "Automatic tumor segmentation using knowledge-based techniques," in IEEE Transactions on Medical Imaging, vol. 17, no. 2, pp. 187-201, April 1998, doi: 10.1109/42.700731.
[17] M. Kaus, S. K. Warfield, A. Nabavi, E. Chatzidakis, P. M. Black, F. A. Jolesz, R. Kikinis, Segmentation of meningiomas and low grade gliomas in mri, in: International conference on medical image computing and computer-assisted intervention, Springer, 1999, pp. 1–10.
[18] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, A. Yuille, Efficient multilevel brain tumor segmentation with integrated bayesian model classification, IEEE transactions on medical imaging 27 (5) (2008) 629–640.
[19] B. H. Menze, K. Van Leemput, D. Lashkari, M.-A. Weber, N. Ayache, P. Golland, A generative model for brain tumor segmentation in multi-modal images, in: International Con- ference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2010, pp. 151–159.
[20]A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 25 (2012) 1097–1105.
[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfit- ting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
[23] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks, Medical image anal- ysis 35 (2017) 18–31.
[24] D. Zikic, Y. Ioannou, M. Brown, A. Criminisi, Segmentation of brain tumor tissues with convolutional neural networks, Proceedings MICCAI-BRATS 36 (2014) 36–39.
[25] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer- assisted intervention, Springer, 2015, pp. 234–241.
[26] Isensee, Fabian, et al. "nnU-net for brain tumor segmentation." International MICCAI Brainlesion Workshop. Springer, Cham, 2020.
[27] Isensee, Fabian, et al. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nature methods 18.2 (2021): 203-211.
[28] Çiçek, Özgün, et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." International conference on medical image computing and computer-assisted intervention. Springer, Cham, 2016.
[29] Henry, Théophraste, et al. "Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution." International MICCAI Brainlesion Workshop. Springer, Cham, 2020.
[30] Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module. arXiv:1807.06521 [cs] (Jul 2018), http://arxiv.org/abs/1807.06521, arXiv: 1807.06521
[31] Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv:1606.00915 [cs] (May 2017), http://arxiv.org/ abs/1606.00915, arXiv: 1606.00915
[32] Sudre, Carole H., et al. "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations." Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2017. 240-248.
[33] Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer vision. 2017.
[34] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
[35] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117
[36] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018)
[37] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., "Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection", The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.KLXWJJ1Q
[38] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., "Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection", The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.GJQ7R0EF
[39] Chen, C.-C.; Juan, H.-H.; Tsai, M.-Y.; Lu, H.H.-S. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning. Sci. Rep. 2018, 8, 1–11. [CrossRef] [PubMed]
[40] J. Phys. Chem. 1996, 100, 31, 12974–12980 Publication Date:August 1, 1996 https://doi.org/10.1021/jp960669l Copyright © 1996 American Chemical Society RIGHTS & PERMISSIONS
[41] W. Kohn, A. D. Becke, and R. G. Parr Density Functional Theory of Electronic Structure The Journal of Physical Chemistry 1996 100 (31), 12974-12980 DOI: 10.1021/jp960669l
[42] Yongjin Zhou, Weijian Huang, Pei Dong, Yong Xia, Shanshan Wang. D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation. 14 Aug 2019[https://arxiv.org/abs/1908.05104]
[43] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. APA
[44] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. APA
[45] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[46]Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task | SpringerLink, https://link.springer.com/chapter/10.1007/ 978-3-030-46640-4 22
[47]Jia, Haozhe, et al. "H 2 NF-Net for Brain Tumor Segmentation Using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task." Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (2020): 58-68.
[48]Wang, Yixin, et al. "Modality-pairing learning for brain tumor segmentation." International MICCAI Brainlesion Workshop. Springer, Cham, 2020.
指導教授 陳健章(Chien-Chang Chen) 審核日期 2022-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明