博碩士論文 110222007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.188.205.249
姓名 林柏宇(Po-Yu Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 添加奈米金屬顆粒對類普魯士藍二次鈉電池效率的影響
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,普魯士藍以及類普魯士藍研究做為在二次電池的材料中占了許多的關注度,原因大致如下:製作成本低、因普魯士藍的立方晶體結構導致其擁有高導電率,以及在充放電過程中的氧化還原反應對結構造成的變化小而有極長的循環壽命。
此研究大致分為兩部分,第一部分為製備普魯士藍,通過沉澱法合成Na-CoFe及Na-FeFe,兩者皆為在室溫的情況下製備,而後使用X-Ray Diffractin 分析樣品與參雜之奈米金屬粒子的晶體結構與粒徑分布、大小。第二部分為研究Na-CoFe、Na-FeFe添加藉由物理氣相沉積PVD 所製備而成的奈米金屬粒子,如銀、鎳等…元素,後製備成電極片,並進行二次鈉電池製備,觀察其充放電表現,包括初始比容量、衰減比例、氧化還原電壓峰值及充放電速率。
在第一部分的實驗中,先藉由X-Ray Diffraction 得到Na-CoFe及Na-FeFe的X光繞射圖,根據圖中繞射峰所出現的位置,利用GSAS軟體進行擬合,確認普魯士藍及金屬粒子之晶體結構並得出其晶格常數、分子鍵長、原子位置、電子密度、電子密度等數據。並藉由繞射峰之寬化長度,藉由Origin軟體以統計計算的方式,計算出Na-FeFe、Na-CoFe與金屬粒子之平均粒徑大小及粒徑分布情形。
在第二部分的實驗中,將普魯士藍奈米顆粒製備成電池正極極片時,分別參雜鎳、銀、錫等…金屬奈米粒子,並組裝成二次鈉電池後,利用電池性能分析儀進行充放電,進行定電流測試,得到電池之累積電荷、電壓、時間、衰退率等數據,並藉由Origin軟體分析,製作出其電池數據相關之圖型。並討論其參雜之金屬粒子的不同,比較其電池充放電效率優劣。
摘要(英) This research can be broadly divided into two parts. The first part involves the synthesis of Prussian blue through a precipitation method, specifically Na-CoFe and Na-FeFe prepared at room temperature. X-ray diffraction analysis is then employed to examine the crystal structure and particle size distribution of the samples.The second part focuses on studying the addition of nanoscale metal particles such as silver and nickel to Na-CoFe and Na-FeFe.These nanoscale metal particles made using physical vapor deposition (PVD) to fabricate. Then fabricate electrode flim.These films are used in the fabrication of secondary sodium batteries, and their electrochemical performance is evaluated. This evaluation includes analyzing the initial specific capacity, capacity decay, peak oxidation-reduction voltage, and charge-discharge rate.
In the experimental phase of the first part, X-ray diffraction patterns of Na-CoFe and Na-FeFe are obtained, and fitting analysis using software like GSAS is conducted to determine the crystal structure of Prussian blue and the metal particles. Various data, such as lattice constants, bond lengths, atomic positions, electron density, and other parameters, are derived from the analysis. The average particle size and size distribution of Na-FeFe, Na-CoFe, and the metal particles are calculated statistically using the broadening of diffraction peaks, with the assistance of software like Origin.
In the experimental phase of the second part, Prussian blue nanoparticles are prepared and incorporated into the positive electrode films of the batteries. Different metal nanoparticles such as nickel, silver, and tin are added separately. The assembled secondary sodium batteries are subjected to charge-discharge cycles using an electrochemical performance analyzer. Data such as cumulative charge, voltage, time, and decay rate are collected, and analysis using software like Origin helps generate battery-related graphs. The performance of the batteries with different metal particle additives is compared.

關鍵字(中) ★ 類普魯士藍
★ 鈉電池
關鍵字(英)
論文目次 論文摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
一. 類普魯士藍材料介紹 1
1.1類普魯士藍介紹 1
1.2 普魯士藍鈉電池特性 2
二. 實驗儀器介紹 3
2.1 X光繞射儀簡介 3
2.2電池性能分析儀 5
三.類普魯士藍奈米顆粒樣品製備與分析 6
3.1 Na-CoFe 類普魯士藍樣品製備 6
3.2 Na-FeFe類普魯士藍樣品製備 10
3.3類普魯士藍元素、結構及粒徑分析 12
3.4 奈米顆粒樣品製作 25
3.5 奈米顆粒結構及粒徑分析 27
四. 類普魯士藍極片與CR2032二次鈉電池製備 35
4.1 PBA正極極片製作 35
4.2金屬奈米顆粒添加正極極片 38
4.3 CR2032 二次鈉電池結構與製備 39
4.4類普魯士藍極片電容含量計算 41
五.類普魯士藍二次鈉電池充放電分析 46
5.1類普魯士藍充放電循環測試 46
5.2 類普魯士藍充放電循環 51
5.3類普魯士藍二次鈉電池庫倫效率與電容衰退率 56
5.4添加Ni奈米顆粒對NaFeFe鈉電池的影響 60
5.5添加Ag奈米顆粒對Na-CoFe鈉電池的影響 64
5.6添加Ni奈米顆粒對Na-CoFe鈉電池的影響 71
5.7添加Sn奈米顆粒對Na-CoFe鈉電池的影響 79
5.8 添加金屬奈米顆粒對Na-CoFe的影響 88
六.結論 89
參考文獻 90
參考文獻 [1] K. Hurlbutt, S. Wheeler, I. Capone and M. Pasta, Prussian Blue Analogs as Battery Materials, Joule,Volume 2, Issue 10, 17 October 2018, Pages 1950-1960
[2] W. Tang, X. Yingying , P. Fangwei, Y. Yang, F.Fan, L. Xiao-Zhen,H. Yu-Shi,M. Zi-Feng, C.Zonghai and R. Yang, Electrochemical Performance of NaFeFe(CN)6 Prepared by Solid Reaction for Sodium Ion Batteries, Journal of The Electrochemical Society, 165 (16) A3910-A3917 (2018)
[3] 張智軒, 2020, 以奈米磁顆粒提升Na-FeFe普魯士藍二次鋰電池效率 國立中央大學碩士 論文,桃園縣中壢市, pg.20。
[4] L. Xinyi,C. Yu and S.Jie, Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries, Adv Energy Mater.Volume 12, Issue 46, December 8, doi.org/10.1002/aenm.202202532.
[5] M. Longtao, C. Huilin, C. Shengmei, L. Xinliang, D. Binbin and Z. Chunyi, Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions, 27 November 2020.
[6] S. Lian, W. Zhaoxiang and C. Liquan, Prussian Blues as a Cathode Material for Lithium Ion Batteries, Chem. Eur. J. 2014, 20,12559- 1256
[7] W. Wanlin and G. Yong , Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nature Communications, doi.org/10.1038/s41467-020-14444-4
[8] Baoqi Wang, Yu Han, 2018, Prussian Blue Analogs for Rechargeable Batteries, iScience, Volume 3, pg.110-133, doi.org/10.1016/j.isci.2018.04.008
[9] 楊仲準, X 光繞射分析技術與應用, 科儀新知第三十二卷第六期 100.6.
[10] 許樹恩與吳泰伯, 1992, X光繞射與材料結構分析, 行政院國家科學委員會精
密儀器發展中心。
[11] A. Fraft, Bull. Hist. Chem. 33, 61 (2008).
[12] K. W. Chapman et al., J. Am. Chem. Soc. 128 , 7009 (2006)
[13] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Ch.6 (1976).
[14] H. M. Reitveld, Acta Crystallogr. 22, 151-2 (1967)
[15] 楊安柔, 2021,外加磁場對Na-FeFe普魯士藍二次鋰電池效率影響, 國立中
央大學碩士論文,桃園縣中壢市。
[16] Wang, A., Kadam, S., Li, H. et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput Mater 4, 15(2018). doi.org/10.1038/s41524-018-0064-0
[17] W. Wanlin, G. Yong, H. Zhe, Y. Zichao, L. Weijie, L. Yongcheng, G.Qin-Fen, W. Zhixing, C. Shu-Lei, L. Hua-Kun and D. Shi-Xue. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nature communication 11, Article number: 980 (2020).
[18] Hwang, J. et al. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)
[19] Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1703137 (2018).
[20] Kim, H. et al. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016).
[21] N. Ben, J. Wenxuan,J. Bo,L. Mengqi,W. Sa and W.Wei, Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors, Nature Communications volume 13, Article number: 2316 (2022)
指導教授 李文献(Wen-Hsien Li) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明