博碩士論文 110222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:18.217.220.114
姓名 姜瑋琪(Wei-Chi Jiang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 不同電子能量作用下對N2O冰晶的衍化影響
相關論文
★ A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice★ X射線與電子能量作用下星際冰晶的化學衍化
★ VUV and EUV irradiation of CH4+NH3 ice mixtures★ Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice
★ Temperature dependent photodesorption of CO ices★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations
★ Diffusion in Realistic-Like Double-Layered Ices★ 能量源照射星際冰晶之光脫附作用與光化學反應
★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 天文觀測顯示在人馬座恆星形成區域有氣態N2O分子的存在,並且具有N-O鍵的分子可能是前生物分子(prebiotic molecules)的潛在前體(precursor)。星際冰晶在冷星雲環境中會因為遭受宇宙射線的照射而產生化學衍化,宇宙射線在冷星雲環境中會因為與氫分子、氫原子的交互作用而產生許多二次電子。過往的研究對於冷星雲環境中的二次低能量電子(≤ 1000 eV)照射冰晶分子所引發的衍化研究並不多,因此本論文將探討在不同低能量電子(600–1000 eV)照射下對N2O冰晶的衍化影響。
研究結果顯示當入射電子能量越高時,電子的穿透深度也越深,導致有更多的N2O分子被消耗形成產物(如:NO, O3, NO2, N2O4, N2O5…)。N2O冰晶在低能量電子的作用下,其消耗行為可以分為前期由化學衍化主導與後期由電子激發脫附(electron stimulated desorption)主導。當N2O冰晶的消耗由電子激發脫附機制主導後,產物產量與脫附速率皆達相對穩定的狀態。
摘要(英) Previous studies indicate that gaseous N2O molecules have been observed in star-forming regions(Sgr B2(M)) and that molecules with N-O bonds may be the potential precursors for prebiotic molecules. Interstellar ice mantles undergo chemical evolution in cold dense cloud environments due to cosmic ray irradiation. Cosmic rays interact with hydrogen molecules and hydrogen atoms, producing numerous secondary electrons(δe-) in cold molecular cloud environments. Previous studies on the evolution of ice molecules irradiated by low-energy electrons (≤ 1000 eV) in cold dense cloud environments are limited. Therefore, this study investigates the evolutionary effects of N2O(s) under irradiation by different low-energy electrons (600–1000 eV), which is equivalent to the secondary electrons produced by the collision of cosmic ray ions with molecules.
In this study, we use different incident electron energies at low temperature of 13 K to influence the chemical evolution. We found that as the energy of incident electrons increases, their penetration depth also increases, leading to the depletion of more N2O molecules and the formation of products such as NO, O3, NO2, N2O4, N2O5. The depletion behavior of N2O(s) under the fluence of low-energy electrons can be divided into an initial stage dominated by chemical evolution and a later stage dominated by electron-stimulated desorption. When the depletion of N2O(s) is dominated by the electron-stimulated desorption mechanism, both the product yield and desorption rate reach a relatively stable phenomenon as a function of fluence.
關鍵字(中) ★ 一氧化二氮
★ 星際冰晶
★ 電子激發脫附
★ 電子穿透深度
關鍵字(英) ★ N2O
★ interstellar matter
★ E-gun irradiation
★ electron penetration depth
★ desorption
論文目次 中文摘要 ............................................iv
英文摘要.............................................v
致謝.................................................vi
目錄.................................................vii
圖片目錄.............................................viii
表格目錄 .............................................x
第一章、 緒論.........................................1
第二章、 實驗方法......................................3
2.1 實驗系統..........................................3
2.1.1 Interstellar Energetic-Process System..........3
2.1.2 Interstellar Photoprocess System...............3
2.2 實驗流程..........................................3
2.3 能量源............................................4
2.3.1 電子槍..........................................4
2.3.2 真空紫外光.......................................5
第三章、 結果與討論.....................................6
3.1 N2O冰晶的電子誘發化學衍化...........................6
3.1.1 N2O冰晶照射電子能量的產物.........................6
3.1.2 定義N2O冰晶消耗的分區.............................8
3.1.3 產物的化學衍化過程................................10
3.2 能量源對冰晶的作用..................................19
3.2.2 脫附性質上的差異..................................20
3.2.3 N2O接受能量源照射對冰晶結構的影響..................23
第四章、 結論..........................................26
參考文獻...............................................28
參考文獻 Acharyya, K, GW Fuchs, HJ Fraser, EF Van Dishoeck, and H Linnartz. 2007. ′Desorption of CO and O2 interstellar ice analogs′, Astronomy & Astrophysics, 466: 1005-12.
Almeida, GC, S Pilling, ALF de Barros, CAP Da Costa, RC Pereira, and EF Da Silveira. 2017. ′Processing of N2O ice by fast ions: implications on nitrogen chemistry in cold astrophysical environments′, Monthly Notices of the Royal
Astronomical Society, 471: 1330-40.
Bates, David R, and PB Hays. 1967. ′Atmospheric nitrous oxide′, Planetary and Space Science, 15: 189-97.
Bennett, Chris J, Claire Pirim, and Thomas M Orlando. 2013. ′Space-weathering of solar system bodies: A laboratory perspective′, Chemical reviews, 113: 9086-150.
Cecchi-Pestellini, Cesare, and Santi Aiello. 1992. ′Cosmic ray induced photons in dense interstellar clouds′, Monthly
Notices of the Royal Astronomical Society, 258: 125-33.
Chen, Y-J, K-J Chuang, GM Muñoz Caro, M Nuevo, C-C Chu, T-S Yih, W-H Ip, and C-YR Wu. 2013. ′Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: application to photodesorption of CO ice′, The Astrophysical Journal, 781: 15.
Chung, Yang-Soo, Hyun Kim, and Young-Min Chung. 2006. ′Measurements of Photoabsorption Cross Sections of Nitric Oxide by Using Double-Ionization Chamber′, Journal of the Optical Society of Korea, 10: 157-61.
Clyne, Michael AA, and I Stuart McDermid. 1975. ′Mass spectrometric determinations of the rates of elementary reactions of NO and of NO 2 with ground state N 4 S atoms′,
Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71: 2189-202.
Cruz-Diaz, GA, GM Munoz Caro, and Y-J Chen. 2014. ′Vacuum-UV absorption spectroscopy of interstellar ice analogues. III. Isotopic effects′, Monthly Notices of the Royal Astronomical Society, 439: 2370-76.
de Barros, ALF, EF Da Silveira, D Fulvio, P Boduch, and H Rothard. 2016. ′Formation of nitrogen-and oxygen-bearing molecules from radiolysis of nitrous oxide ices–implications for Solar system and interstellar ices′, Monthly Notices of the Royal Astronomical Society, 465: 3281-90.
DeMore, William B, and Norman Davidson. 1959. ′Photochemical experiments in rigid media at low temperatures. I. Nitrogen oxides and ozone′, Journal of the American Chemical Society, 81: 5869-74.
Douté, S, B Schmitt, E Quirico, TC Owen, Dale P Cruikshank, C De Bergh, TR Geballe, and TL Roush. 1999. ′Evidence for methane segregation at the surface of Pluto′, Icarus, 142: 421-44.
Dows, David A. 1957. ′Infrared spectrum of solid nitrous oxide′, The Journal of Chemical Physics, 26: 745-47.
Ennis, Courtney P, Chris J Bennett, and Ralf I Kaiser. 2011. ′On the formation of ozone in oxygen-rich solar system ices via ionizing radiation′, Physical Chemistry Chemical Physics, 13: 9469-82.
Fulvio, D, B Sivaraman, GA Baratta, ME Palumbo, and NJ Mason. 2009. ′Novel measurements of refractive index, density and mid-infrared integrated band strengths for solid O2, N2O and NO2: N2O4 mixtures′, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72: 1007-13.
Fulvio, Daniele, GA Baratta, B Sivaraman, NJ Mason, EF Da Silveira, ALF De Barros, O Pandoli, G Strazzulla, and Maria Elisabetta Palumbo. 2019. ′Ion irradiation of N2O ices and NO2: N2O4 ice mixtures: first steps to understand the evolution of molecules with the N–O bond in space′, Monthly Notices of the Royal Astronomical Society, 483: 381-91.
Hagstrum, Homer D, and John T Tate. 1941. ′Ionization and dissociation of diatomic molecules by electron impact′, Physical Review, 59: 354.
Huang, C-H, A Ciaravella, C Cecchi-Pestellini, A Jiménez-Escobar, L-C Hsiao, C-C Huang, P-C Chen, N-E Sie, and Y-J Chen. 2020. ′Effects of 150–1000 eV electron impacts on pure carbon monoxide ices using the interstellar energetic-process system (IEPS)′, The Astrophysical Journal, 889: 57.
Huang, CH, C Cecchi-Pestellini, A Ciaravella, A Jiménez-Escobar, LC Hsiao, NE Sie, and YJ Chen. 2022. ′Chemical and physical processes caused by electrons impacting on H2O–CO mixed ices′, Monthly Notices of the Royal Astronomical Society, 517: 3078-86.
Hudson, RL, MJ Loeffler, and PA Gerakines. 2017. ′Infrared spectra and band strengths of amorphous and crystalline N2O′, The Journal of Chemical Physics, 146: 024304.
Hudson, RL, and MH Moore. 2002. ′The N3 radical as a discriminator between ion-irradiated and UV-photolyzed astronomical ices′, The Astrophysical Journal, 568: 1095.
Hudson, RL, ME Palumbo, G Strazzulla, MH Moore, JF Cooper, and SJ Sturner. 2008. ′Laboratory studies of the chemistry of transneptunian object surface materials′, The Solar System Beyond Neptune: 507-23.
Ioppolo, S, G Fedoseev, M Minissale, E Congiu, F Dulieu, and H Linnartz. 2014. ′Solid state chemistry of nitrogen oxides–Part II: surface consumption of NO 2′, Physical Chemistry Chemical Physics, 16: 8270-82.
Jamieson, Corey S, Chris J Bennett, Alexander M Mebel, and Ralf I Kaiser. 2005. ′Investigating the mechanism for the formation of nitrous oxide [N2O (X 1Σ+)] in extraterrestrial ices′, The Astrophysical Journal, 624: 436.
Laidler, Keith James, and J Keith. 1965. Chemical kinetics (McGraw-Hill New York).
Łapiński, Andrzej, Jens Spanget-Larsen, Jacek Waluk, and J George Radziszewski. 2001. ′Vibrations of nitrous oxide: Matrix isolation Fourier transform infrared spectroscopy of twelve N 2 O isotopomers′, The Journal of Chemical Physics, 115: 1757-64.
Luna, R, M Domingo, C Millán, C Santonja, and MÁ Satorre. 2018. ′Study of the frequency factor in the thermal desorption of astrophysical ice analogs: CH4, C2H4, C2H6, CH3OH, CO, CO2, H2O and N2′, Vacuum, 152: 278-84.
Mateo-Marti, Eva, Olga Prieto-Ballesteros, Guillermo Muñoz Caro, Cristobal González-Díaz, Victoria Muñoz-Iglesias, and Santos Gálvez-Martínez. 2019. ′Characterizing interstellar medium, planetary surface and deep environments by spectroscopic techniques using unique simulation chambers at Centro de Astrobiologia (CAB)′, Life, 9: 72.
McEwan, MJ, GM Lawrence, and HM Poland. 1974. ′Vacuum uv photolysis of N2O′, The Journal of Chemical Physics, 61: 2857-59.
Minissale, M, E Congiu, S Baouche, H Chaabouni, A Moudens, F Dulieu, G Manicó, and V Pirronello. 2013. ′Formation of nitrogen oxides via NO+ O2 gas–solid reaction on cold surfaces′, Chemical Physics Letters, 565: 52-55.
Minissale, M, G Fedoseev, E Congiu, S Ioppolo, F Dulieu, and H Linnartz. 2014. ′Solid state chemistry of nitrogen oxides–Part I: surface consumption of NO′, Physical Chemistry Chemical Physics, 16: 8257-69.
Noyes Jr, W Albert. 1937. ′Photochemical studies. XXV. The direct photochemical decomposition of nitrous oxide′, The Journal of Chemical Physics, 5: 807-12.
Owen, Tobias C, Ted L Roush, Dale P Cruikshank, James L Elliot, Leslie A Young, Catherine De Bergh, Bernard Schmitt, Thomas R Geballe, Robert H Brown, and Mary Jane Bartholomew. 1993. ′Surface ices and the atmospheric composition of
Pluto′, Science, 261: 745-48.
Sandford, Scott A, Michel Nuevo, Partha P Bera, and Timothy J Lee. 2020. ′Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks′, Chemical reviews, 120: 4616-59.
Sie, N-E, GM Muñoz Caro, Z-H Huang, R Martín-Doménech, A Fuente, and Y-J Chen. 2019. ′On the photodesorption of CO2 ice analogs: The formation of atomic C in the ice and the effect of the VUV emission spectrum′, The Astrophysical Journal, 874: 35.
Sivaraman, B, S Ptasinska, S Jheeta, and NJ Mason. 2008. ′Electron irradiation of solid nitrous oxide′, Chemical Physics Letters, 460: 108-11.
Tolman, Richard C. 1925. ′The mechanism of chemical reaction′, Journal of the American Chemical Society, 47: 1524-53.
Zhang, Hui, Gui-Li Zheng, Gang Lv, Yi-Zhao Geng, and Qing Ji. 2015. ′Covalent intermolecular interaction of the nitric oxide dimer (NO) 2′, Chinese Physics B, 24: 093101.
Zhen, Jungfeng, and Harold Linnartz. 2014. ′UV-induced photodesorption and photochemistry of O2 ice′, Monthly Notices of the Royal Astronomical Society, 437: 3190-201.
指導教授 陳俞融(Yu-Jung Chen) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明