博碩士論文 110222025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.222.115.217
姓名 林宣瑋(Syuan-Wei Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Characterizing films synthesis of high-? hydrogenated graphene in low-temperature capacitively-coupled acetylene plasma chemical vapor deposition system)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有鑑於現今半導體工業金屬氧化閘極的微縮製程,傳統使用的介電材料如二
氧化矽,因為其介電常數所造成的漏電問題,取而代之的高介電常數材料的開發變得極為重要。相較於無機物的高介電常數材料,有機材料的低成本、製程多元以及物化性質豐富的特性吸引了眾多學者紛紛投入此研究領域。在西元 2022 年,Kim 等人已成功合成非晶向氫化石墨稀並測試其介電性質成為一有潛力的高介電常數有機材料。借鑑其研究,本實驗室以氫化石墨稀出發,參考理論模擬結果,希望透過電容耦合式化學輔助電漿汽相沉積系統,於乙炔低溫電漿中製造出氫化石墨稀,並透過電漿瓦數改變其晶格構造及薄膜組成,深入研究氫化石墨稀的形成過程以及其介電特性。透過光致發光光譜、拉曼光譜、傅立葉紅外轉換光譜以及金屬-絕緣體-金屬(MIM)之電容量測,本研究成功在低溫乙炔電漿中製造高介電常數(K=32.3)的氫化石墨稀薄膜,更在其電性上觀察到已被理論模擬證實之鐵電材料的性質。
摘要(英) In this decade, high-k material has been widely developed because of its necessary toward narrowing transistor gate length. Unlike traditional silicon dioxide, organic material has drawn lots of attentions due to its low-cost and unique physiochemical properties. In these two years, hydrogenated amorphous graphene has been successfully fabricated as a high-k dielectric material while graphene is a well-known semimetal. Furthermore, there are lots of researches
showed hydrogenated graphene has special properties like bandgap tuning or ferromagnetism. In this report, we want to follow hydrogenated amorphous graphene step to find if hydrogenated graphene can be fabricated as a high-k dielectric material by Raman, Metal-Insulator-Metal (MIM) C-V measurement and FTIR analysis
關鍵字(中) ★ 高介電常數
★ 石墨烯
★ 氫化石墨烯
★ 鐵電材料
★ 電漿輔助化學氣相沉積
★ 電容耦合式電漿
關鍵字(英) ★ High-k material
★ Graphene
★ Hydrogenated graphene
★ Ferroelectric material
★ Plasm enhanced vapor deposition system
★ Capacitively couple plasma
論文目次 Content
摘要...............................................................................................................................II
Abstract........................................................................................................................III
Figure List...................................................................................................................VII
Chapter 1 Introduction ...............................................................................................1
Chapter 2 Motivation and Background.......................................................................2
2-1 Motivation..............................................................................................2
2-2 High Dielectirc Constant Material..........................................................3
2-3 Graphene ...............................................................................................7
2-4 Hydrogenated graphene .......................................................................13
2-4.1 Multiferroic hydrogenated graphene...........................................16
2-5 Chemical vapor deposition (CVD)........................................................18
2-5.1 CVD process .................................................................................18
2-5.2 Advantages and disadvantages ....................................................20
2-6 Plamsa..................................................................................................21
2-6.1 Plasma generation ........................................................................21
2-6.2 Plasam category ...........................................................................22
2-6.3 Plasma characteristics in CVD.....................................................26
2-7 RF-PECVD .............................................................................................28
IV
2-7.1 Inductively (ICP)&Capacitively Coupled Plasma (CCP)............28
2-7.2 Comparison with thermal CVD ...................................................29
2-7.3 Acetylene/Argon plasma PECVD graphene process...................30
2-8 Sacnning Electron Microscopy(SEM) ...................................................32
2-8.1 SEM principle ..............................................................................33
2-8.2 Application on graphene ..............................................................35
2-9 Raman spectrocsopy............................................................................35
2-9.1 Raman scattering..........................................................................36
2-9.2 Raman spectroscopy on graphene................................................43
2-10 FTIR spectroscopy ................................................................................49
2-10.1 FTIR Principle .............................................................................49
2-10.2 ATR-FTIR....................................................................................52
2-11 Optical Emission Spectroscopy(OES) ...................................................53
Chapter 3 Experiment set-up and methods .............................................................54
3-1 PECVD...................................................................................................54
3-1.1 CCP-PECVD setup .........................................................................54
3-1.2 Film synthesis...............................................................................55
3-1.3 Film transfer method...................................................................58
3-2 Plasma Monitoring...............................................................................60
V
3-3 Film treatments and measurements....................................................61
3-3.1 SEM ..............................................................................................61
3-3.2 Raman spectrum..........................................................................61
3-31.3 Electircal properties.....................................................................62
3-3.4 AFM measurement ......................................................................63
3-3.5 ATR-FTIR measurement..............................................................63
Chapter 4 Result and discussion...............................................................................64
4-1 Plasma characterizing ..........................................................................64
4-2 Dielectric behavior...............................................................................79
4-3 Discussion............................................................................................88
Chapter 5 Conclusion................................................................................................91
References ................................................................................................................92
參考文獻 [1] Alias, R., 2013, ′Structural and Dielectric Properties of Glass – Ceramic
Substrate with Varied Sintering Temperatures′, in B. Ertuğ (ed.), Sintering
Applications, IntechOpen, London. 10.5772/54037.
[2] A. K. Jonscher, "The ′universal′ dielectric response. I," in IEEE Electrical
Insulation Magazine, vol. 6, no. 2, pp. 16-22, March-April 1990, doi:
10.1109/57.50801.
[3] Dong-Ok Kim, Hyo-Ki Hong, Dong-Bum Seo, Tran Nam Trung, Chan-Cuk
Hwang, Zonghoon Lee, Eui-Tae Kim, Novel high-k gate dielectric properties of
ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor
devices, Carbon, Volume 158, 2020, Pages 513-518, ISSN 0008-6223,
[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp.
109–162, 2009.
[5] “Vibrations in sp2 Nanocarbons,” Raman Spectroscopy in Graphene Related
Systems. pp. 53–72, 31-Jan-2011.
[6] R. Beams, L. G. Canc, and L. Novotny, “Raman characterization of defects and
dopants in graphene,” J. Phys. Condens. Matter, vol. 27, p. 083002, 2015.
[7] Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of
Growth and Characterization. Crystals 2016, 6 (5), 53
[8] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-
191
[9] T.O. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced
chemical vapor deposition, Carbon 50 (2012) 869-874.
[10] Y.S. Kim, J.H. Lee, Y.D. Kim, S.-K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y.D.
Park, S. Seo, S.-H. Chun, Methane as an effective hydrogen source for singlelayer graphene synthesis on Cu foil by plasma enhanced chemical vapor
deposition, Nanoscale 5 (2013) 1221-1226.
[11] D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y.
Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu, N.-C. Yeh, Single-step
deposition of high-mobility graphene at reduced temperatures, Nat. Commun. 6
(2015) 1e8.
93
[12] C.-C. Yen, Y.-C. Chang, H.-C. Tsai, W.-Y. Woon, Nucleation and growth
dynamics of graphene grown through low power capacitive coupled radio
frequency plasma enhanced chemical vapor deposition, Carbon 154 (2019) 420-
427.
[13] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role
of hydrogen in chemical vapor deposition growth of large single-crystal
graphene, ACS Nano 5 (2011) 6069-6076.
[14] J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low
temperature synthesis of graphene by radio frequency plasma enhanced chemical
vapor deposition, Appl. Surf. Sci. 257 (2011) 6531-6534.
[15] M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho,
R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman
relaxation length in graphene, Carbon 48 (2010) 1592e1597.
[16] L.G. Cancado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B.
Capaz, M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, L.G.
Cançado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz,
M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying
defects in graphene via Raman spectroscopy at different excitation energies,
Nano Lett. 11 (2011) 3190-3196.
[17] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S.
Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman
spectroscopy, Nano Lett. 12 (2012) 3925e3930. [20] A. Eckmann, A. Felten, I.
Verzhbitskiy, R. Davey, C. Casiraghi, Raman study on defective graphene:
effect of the excitation energy, type, and amount of defects, Phys. Rev. B. 88
(2013) 1-11.
[18] A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Methane dissociation
process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes
production, Appl. Phys. Lett. 110 (2017) 1-5
[19] Abhilash Harpale, Marco Panesi, and Huck Beng Chew,” Plasma-graphene
interaction and its effects on nanoscale patterning.“ phys. Rev. B 93,
035416 – Published 11 January 2016
[20] Reece, Timothy. (2007). Characterization of Metalferroelectric-InsulatorSemiconductor Structures Based on Ferroelectric Langmuir-Blodgett
94
Polyvinylidene Fluoride Copolymer Films for Nondestructive Random Access
Memory Applications.
[21] Hoffmann, M., Fengler, F.P.G., Herzig, M. et al. Unveiling the double-well
energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
https://doi.org/10.1038/s41586-018-0854-z
[22] H. Li and G. Subramanyam, "Capacitance of thin-film ferroelectrics under
different drive signals," in IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 56, no. 9, pp. 1861-1867, September 2009,
doi: 10.1109/TUFFC.2009.1262.
[23] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
spectroscopy of transparent flat glass surfaces: A case study for soda lime float
glass,Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
ISSN 0022-3093,
[24] Jo Hsueh Lee, Cheng-Hung Cheng, Bo-Rong Liao and Shi-Hsin Lin Chem.
“Multiferroic hydrogenated graphene bilayer” Chem. Phys., 2020,22, 7962-7968
[25] Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph
Krupke, Kostya S. Novoselov, and Cinzia Casiraghi Nano Letters 2012 12 (8),
3925-3930 DOI: 10.1021/nl300901a
[26] Whitener, Keith. (2018). Review Article: Hydrogenated graphene: A user’s
guide. Journal of Vacuum Science & Technology A. 36. 05G401.
10.1116/1.5034433.
[27] C. Lin et al., Nano Lett. 15, 903 (2015)
[28] B. R. Matis, J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W.
Baldwin, ACS Nano 6, 17 (2012)
[29] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
13148–13153
[30] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
13148–13153
[31] Min Hyuk Park and Cheol Seong Hwang 2019 Rep. Prog. Phys. 82 124502
[32] Phys. Chem. Chem. Phys., 2020,22, 7962-7968
[33] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications,
Park Ridge (1992)
95
[34] X. Chen, et al., Large area CVD growth of graphene, Synthetic Met. (2015)
[35] Beams, R.; Gustavo Can� ado, L.; Novotny, L.Raman Characterization of
Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8)
[36] Tao Xu, Litao Sun, 5 - Structural defects in graphene, Editor(s): Jan Stehr, Irina
Buyanova, Weimin Chen, In Woodhead Publishing Series in Electronic and
Optical Materials, Defects in Advanced Electronic Materials and Novel Low
Dimensional Structures, Woodhead Publishing, 2018, Pages 137 160, ISBN
9780081020531
[37] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.;
Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and
Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
[38] Eckmann, Axel & Felten, Alexandre & Mishchenko, Artem & Britnell, Liam &
Krupke, Ralph & Novoselov, Kostya & Casiraghi, Cinzia. (2012). Probing the
Nature of Defects in Graphene by Raman Spectroscopy. Nano letters. 12. 3925-
30. 10.1021/nl300901a.
[39] Keith E. Whitener, Woo K. Lee, Paul M. Campbell, Jeremy T. Robinson, Paul E.
Sheehan, Chemical hydrogenation of single-layer graphene enables completely
reversible removal of electrical conductivity, Carbon, Volume 72, 2014, Pages
348-353, ISSN 0008-6223,
[40] Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene
oxide-silver nanocomposite as a highly effective antibacterial agent with speciesspecific mechanisms. ACS Appl Mater Interfaces. 2013 May;5(9):3867-74. doi:
10.1021/am4005495. Epub 2013 Apr 29. PMID: 23586616.
[41] J. Mater. Chem., 2012,22, 10457-10459
[42] FTIR Spectroscopy - Theory and Fundamentals | JASCO (jascoinc.com)
[43] Ausili, Alessio & Sánchez, Marina & Gómez-Fernández, Juan. (2015).
Attenuated total reflectance infrared spectroscopy: A powerful method for the
simultaneous study of structure and spatial orientation of lipids and membrane
proteins. Biomedical Spectroscopy and Imaging. 4. 159-70. 10.3233/BSI150104.
[44] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
spectroscopy of transparent flat glass surfaces: A case study for soda lime float
96
glass, Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
ISSN 0022-3093,
[45] https://www.agilent.com/en/support/atomic-spectroscopy/inductively-coupledplasma-optical-emission-spectroscopy-icp-oes/icp-oes-instruments/icp-oes-faq
[46] Alias, R., 2013, ′Structural and Dielectric Properties of Glass – Ceramic
Substrate with Varied Sintering Temperatures′, in B. Ertuğ (ed.), Sintering
Applications, IntechOpen, London. 10.5772/54037
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2022-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明