博碩士論文 110222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.15.87
姓名 沈聿陞(Yu-Sheng Shen)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Dedicated photon identification for H ⭢ Zγ with the CMS detector at √ s = 13 TeV)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ Assembly and Beam Test Analysis of sPHENIX INTT Detector
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-26以後開放)
摘要(中) 評估希格斯玻色子罕見衰變的測量有助於理解粒子物理標準模型
(SM)以及希格斯玻色子衰變至正負電子對和光子的貢獻。尋找希格斯
玻色子衰變至Z玻色子和光子具有相對乾淨的終態,但在很大程度上受到
不可避免的背景p-p→Zγ和可減少的背景Z玻色子及噴流過程的影響。為
增強LHC Run-2數據集的分析,已實施了多種新的分析技術。光子識別在
多變量分析中起著關鍵作用,可減少Z+Jets的貢獻。本研究考慮了來自
H→Zγ的光子和來自Z+Jets的光子的特定變數,使用LHC Run-2 UltraLegacy(UL)模擬數據進行了機器學習。學習結果與CMS-EGM團隊為
Ultra-Legacy的標准光子識別模型進行了比較。預期的中位數顯著性為
1.15σ,表明改進了8.4%。我們的目標是將這一新發展應用於Run-2 UltraLegacy和Run-3分析。
摘要(英) The measurement of the rare decay of the Higgs boson would help understand the
Standard Model(SM) of particle physics and the NLO contribution of H→ll γ final
state. The search for H→Zγ has a relatively clean final state but is significantly contributed by irreducible background SM Zγ and reducible background Z+Jets processes.
To enhance the analysis of the LHC Run-2 dataset, several new analysis techniques
have been implemented. Photon identification plays a crucial role in reducing the
contribution of Z+jets in multivariate analysis. This study considers specific shower
shape and isolation variables of prompt photons from H→Zγ and jet-fake photons
from Z+Jets using LHC Run-2 Ultra-Legacy(UL) simulations. The training results are
compared with standard photon identification trained by CMS-EGM groups for ULtraLegacy. The expected significance is 1.15 σ, indicating an improvement of 8.4%. We aim
to implement this new development for Run-2 Ultra-Legacy and Run-3 analysis.
關鍵字(中) ★ 希格斯玻色子
★ 光子
★ 機器學習
關鍵字(英) ★ Higgs boson
★ photon
★ XGBoost
論文目次 List of Figures xv
List of Tables xxi
1 Introduction 1
1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Higgs productions and decays . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The rare Higgs decay H → Zγ → llγ . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 The features of the decay . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Background composition . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Previous results from CMS and ATLAS . . . . . . . . . . . . . . . 10
2 Experimental apparatus 13
2.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Compact Muon Solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Dedicated Photon MVA 19
3.1 Dedicated MVA training set-up . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Training samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Signal samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Background samples . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Event weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Training variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 Hyperparameter sets . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Comparison between dedicated photon ID and EGM ID . . . . . 27
3.2.2 Photon ID efficiency comparisons in pT and ηsc region . . . . . . . 31
3.3 Neural Network algorithm trained for dedicated ID . . . . . . . . . . . . 34
4 Validation of shower shape and isolation corrections 37
4.1 Vaildation with Z to µµγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Mismatch of ESEoverRawE correction . . . . . . . . . . . . . . . . . . . . 49
4.3 The Validation of photon ID . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Analysis Strategy 53
5.1 MC samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Object reconstruction and identification . . . . . . . . . . . . . . . . . . . 54
5.3.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Final state radiation photon recovery . . . . . . . . . . . . . . . . . . . . . 57
5.6 kinematic refit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Event categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Background and Signal modeling . . . . . . . . . . . . . . . . . . . . . . . 60
5.8.1 Non-resonant background modeling . . . . . . . . . . . . . . . . . 61
F-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8.2 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6 Result and Conclusion 71
6.1 Asymptotic limit and significance . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A Input variables of dedicated MVA ID 75
A.1 ECAL barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 ECAL endcap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B Dedicated phton ID training output 81
B.1 Learning curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Bibliography 83
參考文獻 [1] S. Chatrchyan and the others. Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Physics Letters B, 716(1):30–61, sep 2012.
[2] G. Aad and the others. Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Physics Letters B,
716(1):1–29, sep 2012.
[3] John Ellis, Mary K. Gaillard, and Dimitri V. Nanopoulos. A historical profile of
the higgs boson. In Advanced Series on Directions in High Energy Physics, pages
255–274. WORLD SCIENTIFIC, aug 2016.
[4] A.M. Sirunyan and the others. A measurement of the higgs boson mass in the
diphoton decay channel. Physics Letters B, 805:135425, 2020.
[5] CERN. Cern yellow reports: Monographs, vol 2 (2017): Handbook of lhc higgs
cross sections: 4. deciphering the nature of the higgs sector, 2017.
[6] and A. M. Sirunyan and the others. Measurements of higgs boson production cross sections and couplings in the diphoton decay channel at $$
sqrt{mathrm{s}} $$ = 13 TeV. Journal of High Energy Physics, 2021(7), jul
2021.
[7] A. Djouadi, V. Driesen, W. Hollik, and A. Kraft. The higgs-photon-z boson coupling revisited. The European Physical Journal C, 1(1-2):163–175, mar 1998.
[8] Cheng-Wei Chiang and Kei Yagyu. Higgs boson decays to γγ and zγ in models
with higgs extensions. Phys. Rev. D, 87:033003, Feb 2013.
[9] Marcela Carena, Ian Low, and Carlos E. M. Wagner. Implications of a modified
higgs to diphoton decay width. Journal of High Energy Physics, 2012(8), aug 2012.
[10] Chian-Shu Chen, Chao-Qiang Geng, Da Huang, and Lu-Hsing Tsai. New scalar
contributions to h → zγ. Phys. Rev. D, 87:075019, Apr 2013.
[11] H. T. Hung, T. T. Hong, H. H. Phuong, H. L. T. Mai, and L. T. Hue. Neutral higgs
boson decays h → zγ, γγ in 3-3-1 models. Phys. Rev. D, 100:075014, Oct 2019.
[12] and A. Tumasyan et al. Search for higgs boson decays to a z boson and a photon
in proton-proton collisions at $$ sqrt{s} $$ = 13 TeV. Journal of High Energy
Physics, 2023(5), may 2023.
[13] G. Aad the others. A search for the zγ decay mode of the higgs boson in pp
collisions at s=13 tev with the atlas detector. Physics Letters B, 809:135754, 2020.
[14] Esma Mobs. The CERN accelerator complex. Complexe des accélérateurs du
CERN. 2016. General Photo.
[15] Tai Sakuma and Thomas McCauley. Detector and event visualization with
SketchUp at the CMS experiment. Technical report, CERN, Geneva, 2014. Comments: 5 pages, 6 figures, Proceedings for CHEP 2013, 20th International Conference on Computing in High Energy and Nuclear Physics.
[16] The CMS Collaboration. Description and performance of track and primaryvertex reconstruction with the cms tracker. Journal of Instrumentation,
9(10):P10009, oct 2014.
[17] A Benaglia. The cms ecal performance with examples. Journal of Instrumentation,
9(02):C02008, feb 2014.
[18] A.M. Sirunyan and the others. Performance of the cms muon detector and
muon reconstruction with proton-proton collisions at √
s=13 tev. Journal of
Instrumentation, 13(06):P06015, jun 2018.
[19] Simone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. Nlo vector-boson
production matched with shower in powheg. Journal of High Energy Physics,
2008(07):060, jul 2008.
[20] S Dawson et al. Handbook of lhc higgs cross sections: 1. inclusive observables,
2011.
[21] Parallelizable bayesian optimization in r. https://github.com/
AnotherSamWilson/ParBayesianOptimization.
[22] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems, 2016.
[23] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities
improve neural network acoustic models.
[24] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
2017.
[25] CMS Collaboration. Common tools for analyses of Higgs boson in the diphoton
decay channel with Run2 ultra-legacy data, 2021.
[26] and A. M. Sirunyan et al. Measurements of properties of the higgs boson decaying
into the four-lepton final state in pp collisions at $$ sqrt{s}=13 $$ TeV. Journal
of High Energy Physics, 2017(11), nov 2017.
[27] Muon usage recommendations. https://twiki.cern.ch/twiki/bin/
view/CMS/TWikiPAGsMUO.
[28] Egamma json’s for getting electron/photon scale factors. https://twiki.
cern.ch/twiki/bin/view/CMS/TWikiPAGsMUO.
[29] The CMS Collaboration. Description and performance of track and primaryvertex reconstruction with the CMS tracker. Journal of Instrumentation,
9(10):P10009–P10009, oct 2014.
[30] CMS Collaboration. The search of H → Zgamma production, 2016.
[31] P.D. Dauncey, M. Kenzie, N. Wardle, and G.J. Davies. Handling uncertainties in
background shapes: the discrete profiling method. Journal of Instrumentation,
10(04):P04015–P04015, apr 2015.
[32] Higgs combine tool. https://cms-analysis.github.io/
HiggsAnalysis-CombinedLimit/part3/runningthetool/.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2023-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明