博碩士論文 110223033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.15.22.160
姓名 吳思翰(Szu-Han Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 異位相Pyridine含雙氧原子之BF2-chelated結構其桿狀液晶性質探討及聚氨酯無錫觸媒開發及探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 第壹部分 :
於近期的文獻中,含BF2之錯合物與多雜環系統被廣泛的合成與討論,BF2 complex 因其特殊的光物理性質,在生物顯影、分子探針、發光材料、光感應器......等領域具有發展性,然而在液晶領域的例子為少數,因此本研究以Pyridine BF2 complex為研究核心,探討其液晶性質。
参考實驗室曾製備之化合物 I, II, III 及 IV,將其分子長度減半,使分子結構更加呈直線型,並增加 OH 官能基使分子極性增強,藉此探討 Pyridine 不同位相以及含硼錯合物對於液晶性質的影響,並觀察在不同側鏈基長短下對其液晶性質之影響。
成功以縮合反應合成出以 Pyridine 做為主要的 central core 之配位基 2a 及 2b,再與 boron difluoride (BF2) 形成錯合物 1a 及 1b;而經偏光顯微鏡及差示掃描量熱分析儀等儀器下證實,錯合物 1a 及 1b 皆為雙向型桿狀液晶SmA相。
與化合物 I, II, III 及 IV 對比,可發現液晶相範圍由原本的 29 C 大幅提升至53 C,證實了增加分子間氫鍵及趨於直線的結構有助於桿狀液晶的形成;除此之外,分子模擬之結果可推測桿狀液晶分子之排列及堆疊,經計算,模擬之分子長度大於X-粉末射線繞射儀實驗所得之分子長度,故可推定化合物 1a, 1b (n = 12) 由兩個分子組成一個桿,並排列成SmA相。
第貳部分 :
聚氨酯 (PU) 為一種聚合物,由於其結構排列、優異的拉伸強度和耐化學性而具有獨特的優勢。目前於聚氨酯 (PU) 聚合反應中,普遍使用含tin化合物作為催化劑 (i.e. DBTL),然而有機錫具有日益嚴格的環保法規及環境劇毒,另尋其它無錫觸媒的催化劑以替代 DBTL 已成為另一必要趨勢。因此第二部分以金屬錯合物為研究主體,開發具有良好催化活性與選擇性的無毒或低毒性觸媒。
参考文獻,在 PU 催化反應中,具良好活性的金屬錯合物,將其更換中心金屬或對結構進行修飾,探討不同配位基或中心金屬對催化反應性與選擇性的差異。
摘要(英) First Part :
Recently, five-circular heterocyclic ring and BF2 complexes have been widely discussed and synthesized. Because of the special photophysical properties of BF2 complexes, they have good potential in bioimagings, molecular probes, luminescent materials, light sensor, etc. However, liquid crystals are rarely used in these cases. Thus, this paper focuses on the liquid crystals’ properties of pyridine BF2 complexes.
Refer to Compound I, II, III , IV that prepared and studied in our labortatory, we decided to add an OH group and remove one of the alkoxy groups in order to get an asymmetric molecule. In addition, this molecule is tending to be straight, and the OH group can enhance its polarity. The effects of pyridine’s N-position and different numbers of alkoxy groups on the liquid crystals’ properties were also observed. All compounds were characterized by 1H and 13C-NMR spectroscopy, while their mesogenic phase properties were studied by polarized optical microscope (POM) and differential scanning calorimeter (DSC).
In contrast to compound I, II, III , IV , the temperature ranges of liquid crystals were highly increased, which met our expectation. Besides, for compound 1a and 1b, we could comfirm that two molecules were combined to form a rod through MM2 calculation, which arranged into SmA phase.
Second Part :
Polyurethane (PU) is a polymer with unique advantages due to its structural alignment, excellent tensile strength and chemical resistance. Recently, tin-containing compounds are commonly used as catalysts (i.e. DBTL) in polyurethane (PU) polymerization. However, organotin has increasingly strict environmental regulations and is highly toxic to the environment. Looking for other tin-free catalysts to replace DBTL has become necessary trend. Therefore, the second part study focuses on developing non-toxic or low-toxic metal complexes catalysts with catalytic activity and selectivity.
References, in the catalytic reaction of PU, the metal complexes show good catalytic activity. By Substituted central metal and modified structures, discuss the differences in catalytic reactivity and selectivity of different ligands or central metals.
關鍵字(中) ★ 液晶
★ 桿狀液晶
★ 聚氨酯
★ 金屬觸媒
關鍵字(英) ★ Liquid Crystal
★ Smectic Liquid Crystal
★ Polyurethane
★ Metal Catalyst
論文目次 摘要 i
Abstract vii
謝誌 ix
目錄 xi
表目錄 xvi
第壹部分 1
第一章 液晶緒論 2
1-1 液晶簡介 3
1-2 液晶相形成條件 3
1-3 液晶相分類 5
1-3-1 向列型液晶 6
1-3-2 層列型液晶 6
1-4 Boron difluoride complex 簡介 7
1-5 研究動機 8
第二章 實驗部分 11
2-1 實驗藥品 12
2-2 儀器設備 14
2-3 實驗流程 20
2-4 實驗步驟 21
第三章 結果與討論 30
3-1 化合物性質探討 31
3-1-1 化合物結構與代號 31
3-1-2 化合物 1H NMR 與 19F NMR探討 31
3-1-3 理論計算-密度泛函理論 (Density Functional Theory, DFT) 33
3-1-4 化合物之偏光紋理圖 35
3-1-5 化合物之熱微差掃描分析儀 (DSC) 38
3-1-6 化合物之熱重分析 (TGA) 41
3-1-7 化合物之Powder X-ray分析與分子模擬排列 44
3-1-8 化合物之光學性質探討 48
第四章 結論 52
4-1 結論 53
第貳部分 55
第五章 聚氨酯諸論 56
5-1 聚氨酯簡介 57
5-2 研究動機 58
5-2-1 系列一研究動機 59
5-2-2 系列二研究動機 59
5-2-3 系列三研究動機 60
第六章 實驗部分 61
6-1 實驗藥品 62
6-2 儀器設備 64
6-3 系列一、二、三觸媒製備流程 67
6-4 實驗步驟 68
6-5 Urethane reaction反應性測試實驗流程 76
第七章 結果與討論 78
7-1 假定觸媒催化反應機構 79
7-2 化合物性質探討 80
7-2-1 化合物結構與代號 80
7-2-2 系列一、二、三之 Urethane Reaction 反應性測試 80
7-2-3 系列一、二、三之 Urethane Reaction 選擇性測試 85
第八章 結論 88
8-1 結論 89
第九章 參考文獻 90
參考文獻 [1] Friedrich Reinitzer, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1888, 9, 421–441.
[2] H. T. Nguyen, C. Destrade and J. Malthete, Adv. Mater., 1997, 9, 375–388.
[3] (a) C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885–3896. (b) J. Liu, E. M. Murray and V. G. Young, Chem. Commun., 2003, 15, 1904–1905.
[4] C. Qian, M. Liu, G. Hong, P. Xue, P. Gong and R. Lu, Org.Biomol. Chem., 2015, 13, 2986–2998.
[5] M. Santra, H. Moon, M. H. Park, T. W. Lee, Y. K. Kim and K. H. Ahn, Chem. – Eur. J., 2012, 18, 9886–9893.
[6] X. Li and Y. A. Son, Dyes Pigm., 2014, 107, 182–187.
[7] J. Massue, D. Frath, G. Ulrich, P. Retailleau and R. Ziessel, Org. Lett., 2012, 14, 230–233.
[8] G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser, Nat. Mater., 2009, 8, 747–751.
[9] S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen and D. F. O’Shea, J. Mater. Chem. B, 2014, 2, 7459–7463.
[10] J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077–10082.
[11] A. Ojida, T. Sakamoto, M. A. Inoue, S. H. Fujishima, G. Lippens and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543–6548.
[12] T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4953–4972.
[13] Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang and X. Dong, J. Mater. Chem. B, 2017, 5, 1566– 1573.
[14] D. O. Frimannsson, M. Grossi, J. Murtagh, F. Paradisi and D. F. O’Shea, J. Med. Chem., 2010, 53, 7337– 7343.
[15] A. D’Ale´o and F. Fages, Photochem. Photobiol. Sci., 2013, 12, 500–510.
[16] M. Mamiya, Y. Suwa, H. Okamoto and M. Yamaji, Photochem. Photobiol. Sci., 2016, 15, 928–936.
[17] D. J. Wang, B. P. Xu, X. H. Wei and J. Zheng, J. Fluorine Chem., 2012, 140, 49–53.
[18] R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Macromol. Rapid Commun., 2014, 35, 1315–1319.
[19] R. S. Singh, M. Yadav, R. K. Gupta, R. Pandey and D. S. Pandey, Dalton Trans., 2013, 42, 1696–1707.
[20] M. J. Kwak and Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 2865–2866.
[21] Q. Liu, X. Wang, H. Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C, 2015, 3, 2953–2959.
[22] T. M. H. Vuong, J. Weimmerskirch-Aubatin, J. F. Lohier, N. Bar, S. Boudin, C. Labbe´, F. Gourbilleau, H. Nguyen, T. T. Dang and D. Villemin, New J. Chem., 2016, 40, 6070–6076.
[23] Y. Meesala, V. Kavala, H. C. Chang, T. S. Kuo, C. F. Yao and W. Z. Lee, Dalton Trans., 2015, 44, 1120–1129.
[24] R. Tan, Q. Lin, Y. Wen, S. Xiao, S. Wang, R. Zhang and T. Yi, CrystEngComm, 2015, 17, 66746680.
[25] A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891−4932.
[26] K. Benelhadj, J. Massue and G. Ulrich, New J. Chem., 2016, 40, 5877–5884.
[27] M. Chapran, E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Grazulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara, ACS Appl. Mater. Interfaces, 2017, 9, 4750–4757.
[28] Y.W. Chen, G. H. Lee, C.K. Lai, Dalton Trans., 2017, 46, 12274-12283.
[29] Y.W. Chen, Y.C. Lin, H.M. Kuo, C.K. Lai, J. Mater. Chem. C, 2017, 5, 5465-5477.
[30] H.M. Kuo, Y.T. Hsu, Y.W. Wang, G.H. Lee, C.K. Lai, Tetrahedron., 2015, 71, 7729-7738.
[31] D.Nagaraju, E. Rajanarendar, P. P. Kumar and M. N. Reddy, New J. Chem., 2017, 41, 4783-4787.
[32] K. Kato, M. Gon, K. Tanaka, Y. Chujo, Polymers, 2019, 11, 1195.
[33] T.E. Youssef, H. Al-Turaif, A.A. Wazzan, J. Polym. Sci., 2015, 2015.
[34] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, RSC Adv., 2016, 6, 114453–114482.
[35] M. Patri, S.K. Rath, U.G. Suryavansi, J. Appl. Polym. Sci., 2006, 99, 884–890.
[36] H.W. Engels, H.G. Pirkl, R. Albers, R.W. Albach, J. Krause, A. Hoffmann, H. Casselmann, J. Dormish, Angew. Chemie - Int. Ed., 2013, 52, 9422-9441.
[37] A.G. Ajaz, Rubber Chem. Technol. 1995, 68, 481-506.
[38] Q. An, S.V. Zybin, W.A. Goddard, A. Jaramillo-Botero, M. Blanco, S.N. Luo, Angew. Chem., 1947, 59, 257-272.
[39] O. Bayer, Phys. Rev. B - Condens. Matter Mater. Phys., 2011, 84.
[40] J. Schmidt, R. Wei, T. Oeser, L.A.D.e.S. Silva, D. Breite, A. Schulze, W. Zimmermann, Polymers, 2017, 65.
[41] M.S. Rolph, A.L.J. Markowska, C.N. Warriner, R.K. O’Reilly, Polym. Chem., 2016, 7, 7351-7364.
[42] G. Alva, Y. Lin, G. Fang, Energy Mater. Sol. Cells., 2018, 186, 14-28.
[43] D. Bresolin, A. Valério, D. de Oliveira, M.K. Lenzi, C. Sayer, P.H.H. de Araújo, J. Polym.Environ, 2018, 26.6, 2467-2475.
[44] Eram Sharmin, Fahmina Zafar., Intech, 2012.
[45] Mohammad Mizanur Rahman, Md. Hasan Zahir , Md. Bashirul Haq, Dhafer A. Al Shehri, A. Madhan Kumar, Coating, 2018, 8, 34.
[46] Haritz Sardon,Ana Pascual, David Mecerreyes, Daniel Taton, Henri Cramail, and James L. Hedrick. Macromolecules, 2015, 48, 3153 3165.
[47] Alsarraf, J.; Ammar, Y. A.; Robert, F.; Cloutet, E.; Cramail, H.; Landais, Y. Macromolecules, 2012, 45, 2249-2256.
[48] Jason Y. C. Lim; Qianyu Lin; Connie K. Liu; Liangfeng Guo; Kun Xuea; Xian Jun Loh. Mater. Adv., 2020, 1, 3221.
[49] J. Chen; Y. Huang. Wiley-VCH., 2018, 261-286.
[50] Jing Liu; Xiao-Ning Xing; Jin-Hai Huang; Liang-Qiu Lu; Wen-Jing Xiao. Chem. Sci., 2020, 11, 10605-10613.
指導教授 賴重光 吳國暉(Chung-Kung Lai Kuo-Hui Wu) 審核日期 2022-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明