博碩士論文 110223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.188.162
姓名 李東(Dong Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 單晶金屬有機骨架材料封裝活體細菌之研究
(Bacterial Microrobot for the Encapsulation of Living Bacteria in a Single Metal-Organic Frameworks)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 癌症為全球死因第二位,每年約有一千萬人死於癌症。而在台灣,癌症已連續四十年蟬聯十大死因的首位。且癌症發生率也年年上升。癌症的傳統療法常具有同時傷害癌症細胞與一般細胞的性質,身體虛弱的癌症病患不僅需承受強大的副作用,且治療過程往往十分漫長。因此需要開發新型且有效的癌症治療方法。在醫學上,有使用細菌進行免疫反應之免疫療法。免疫療法是藉由活化人體的免疫系統,來達到殺傷癌細胞的效果。但癌症病患的體內常有抗生素與溶菌酶等其他療法所施打的藥物,導致微生物降低活性甚至死亡。因此科學家便致力研究結合微生物的生物複合材料,來增強生物細胞對環境的適應性。
本研究利用本實驗室於2015年發表於JACS之文章,利用類沸石咪唑骨架材料-90(ZIF-90)封裝酵素之技術,合成微米級ZIF-90封裝大腸桿菌(E .coli@ZIF-90),並與先前發表之多晶包覆大腸桿菌奈米級類沸石咪唑骨架材料-8(E. coli⸦ZIF-8)比較。發現經由紫外光滅菌程序,仍能保持單晶包覆之E . coli@ZIF-90內大腸桿菌約百分之八十的存活率。且在照射紫外光時間增加後,大腸桿菌之存活率沒有明顯下降。並合成封裝抗癌藥物之奈米級ZIF-90,期望將來可將抗癌藥物協同細菌癌症療法。以開創嶄新的癌症療法。
摘要(英) Cancer has remained the leading cause of death in Taiwan, with rising incidence rates annually. Conventional cancer treatments pose risks to both cancer cells and healthy cells, resulting in severe side effects and lengthy procedures for weakened patients. Microbial-mediated treatments provide a targeted approach by selectively colonizing tumors, inhibiting cancerous growth, and minimizing negative impacts compared to less precise methods. However, concerns arise regarding the potential spread, mutation, and acquisition of antibiotic resistance by attenuated bacteria. Enhancing targeting efficiency and identifying safe and effective bacterial strains continue to pose challenges in this field.
According to our previous report, in this study, our laboratory successfully synthesized micron-scale Zeolitic imidazolate frameworks-90 (ZIF-90)-encapsulated E. coli (E. coli@ZIF-90). To make comparisons, we examined the poly-nanocrystalline encapsulated E. coli known as Zeolitic imidazolate frameworks -8 (E. coli⸦ZIF-8). Despite increased exposure to UV light, the single-crystal coated E. coli@ZIF-90 displayed an impressive 80% survival rate of encapsulated bacteria, showcasing exceptional preservation during UV sterilization with no significant decline in E. coli′s survival rate. Furthermore, our research successfully synthesized nanoscale ZIF-90 for the encapsulation of anti-cancer drugs, demonstrating the potential for synergistic approaches that integrate anti-cancer drugs and bacterial cancer therapy, paving the way for a novel paradigm in cancer treatment with enhanced therapeutic outcomes.
關鍵字(中) ★ 金屬有機框架
★ 微生物介導療法
★ Zeta 電位
★ 大腸桿菌
★ 植物乳桿菌B21
關鍵字(英) ★ Metal-organic Frameworks
★ Microbial-Mediated Therapy
★ Zeta Potential
★ Escherichia coli
★ Lactiplantibacillus plantarum B21
論文目次 摘要 i
Abstract ii
圖目錄 viii
表目錄 viii
1 第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1 金屬有機骨架材料 1
1-1-2 類沸石咪唑骨架材料 3
1-1-3 類沸石咪唑骨架材料-8/-90 5
1-1-4 鋁基金屬有機骨架材料A520 5
1-2 微生物 6
1-2-1 微生物 6
1-2-2 大腸桿菌(Escherichia coli, E .coli) 6
1-2-3 植物乳桿菌B21(Lactiplantibacillus plantarum B21, L. plantarum B21) 7
1-2-4 質體(Plasmid) 8
1-2-5 癌症療法 10
1-2-6 細菌癌症療法(Bacterial Cancer Therapy) 11
1-3 研究動機與目的 14
2 第二章 實驗 16
2-1 實驗藥品與設備 16
2-1-1 實驗藥品 16
2-1-2 實驗儀器 19
2-1-3 場發掃描式電子顯微鏡(Field-emission Scanning Electron Microscope, FE-SEM) 21
2-1-4 X射線粉末繞射儀(Power X-ray Diffractometer, PXRD) 22
2-1-5 攜帶式分光光度計(Ultrospec 10 cell Density Meter) 24
2-1-6 紫外光可見光分光光譜儀(UV/VIS Spectrophotomter) 24
2-1-7 界面電位分析儀(Zeta Potential Analyzer) 24
2-2 實驗使用之酵素 26
2-2-1 溶菌酶(Lysozyme) 26
2-2-2 蛋白酶 (Protease) 26
2-3 實驗步驟 27
2-3-1 大腸桿菌之培養步驟 27
2-3-2 微米級類沸石咪唑骨架材料-90封裝之大腸桿菌(E .coli@ZIF-90)之合成步驟 28
2-3-3 奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌(E .coli⸦ZIF-8)之合成步驟 29
2-3-4 微米級類沸石咪唑骨架材料-90封裝之大腸桿菌(E .coli@ZIF-90)抵抗紫外光能力測試實驗步驟 29
2-3-5 奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌(E .coli⸦ZIF-8)抵抗紫外光能力測試實驗步驟 30
2-3-6 大腸桿菌(E .coli)抵抗紫外光能力測試實驗步驟 30
2-3-7 奈米級類沸石咪唑骨架材料-90合成步驟 31
2-3-8 單批微米級類沸石咪唑骨架材料-90封裝之大腸桿菌(E. coli@ZIF-90)含有之活體 E. coli 數量測定 31
2-3-9 奈米級類沸石咪唑骨架材料-90包覆阿黴素(DOX@nano ZIF-90)之合成步驟 32
2-3-10 奈米級類沸石咪唑骨架材料-90包覆腎上腺皮質酮(Prednisolone@nano ZIF-90)之合成步驟 32
2-3-11 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌(E .coli⸦ nano ZIF-90)之合成步驟 33
2-3-12 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌再次結晶實驗之相關步驟 33
2-3-13 奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌(E. coli⸦ZIF-8)界面電位測定步驟 34
2-3-14 植物乳桿菌B21之培養步驟 34
2-3-15 鋁基金屬有機骨架材料A520塗層之植物乳桿菌B21之合成步驟 35
3 第三章 結果與討論 36
3-1 大腸桿菌生物複合材料之相關鑑定 36
3-1-1 X射線粉末繞射儀之鑑定結果 36
3-1-2 場發掃描式電子顯微鏡之成像結果 37
3-1-3 單批微米級類沸石咪唑骨架材料-90封裝之大腸桿菌(E. coli@ZIF-90)含有之活體 E. coli 數量測定 38
3-1-4 微米級類沸石咪唑骨架材料-90 /奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌(E .coli@ZIF-90/E .coli⸦ZIF-8)抵抗紫外光能力測試 39
3-2 抗癌藥物生物複合材料之相關鑑定 42
3-2-1 X射線粉末繞射儀之鑑定結果 42
3-2-2 場發掃描式電子顯微鏡之成像結果 44
3-2-3 奈米級類沸石咪唑骨架材料-90包覆阿黴素測試 46
3-2-4 奈米級類沸石咪唑骨架材料-90包覆腎上腺皮質酮測試 48
3-2-5 界面電位對於類咪唑骨架材料-8結晶大小之影響測試 49
3-3 植物乳桿菌B21生物複合材料之相關鑑定 51
3-3-1 X射線粉末繞射儀之鑑定結果 51
3-3-2 場發掃描式電子顯微鏡之成像結果 52
3-3-3 單批奈米級A520塗層之L. plantarum B21 (B21⸦A520)含有之活體 L. plantarum B21數量測定 53
4 第四章 結論與未來展望 55
參考文獻 56
參考文獻 1. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′ tetracyanotetraphenylmethane]
BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
2. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715-1724.
3. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
5. Moghadam, P. Z.; Li, A.; Liu, X.-W.; Bueno-Perez, R.; Wang, S.-D.; Wiggin, S. B.; Wood, P. A.; Fairen-Jimenez, D., Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science 2020, 11 (32), 8373-8387.
6. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
7. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
8. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
9. Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B., Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
10. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
11. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157.
12. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808.
13. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
14. Zhou, J.; Wang, B., Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945.
15. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
17. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
18. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
19. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
20. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
21. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
22. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
23. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
24. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.
25. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
26. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
27. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
28. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the American Chemical Society 2020, 142 (11), 5177-5183.
29. Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; de Vos, D.; Chang, J.-S.; Cho, K. H.; Ramsahye, N.; Devic, T.; Daturi, M.; Maurin, G.; Serre, C., The Structure of the Aluminum Fumarate Metal–Organic Framework A520. Angewandte Chemie International Edition 2015, 54 (12), 3664-3668.
30. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U., The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous and Mesoporous Materials 2012, 157, 131-136.
31. van Leewenhoeck, A., Observations, Communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch Letter of the 9th of Octob. 1676. Here English′d: concerning Little Animals by Him Observed in Rain-Well-Sea. and Snow Water; as Also in Water Wherein Pepper Had Lain Infused. Philosophical Transactions (1665-1678) 1677, 12, 821-831.
32. Escherich, T., Klinisch-therapeutische beobachtungen aus der choleraepidemie in Neapel. Mun Med Wochenschrift 1884, 31, 561-564.
33. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R., Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746-8749.
34. Duar, R. M.; Lin, X. B.; Zheng, J.; Martino, M. E.; Grenier, T.; Pérez-Muñoz, M. E.; Leulier, F.; Gänzle, M.; Walter, J., Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017, 41 (Supp_1), S27-s48.
35. Parlindungan, E.; Dekiwadia, C.; Tran, K. T. M.; Jones, O. A. H.; May, B. K., Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. LWT 2018, 92, 556-563.
36. Addgene Depositor Full Sequence Map for pET28:GFP.
37. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-8.
38. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences 2001, 98 (26), 15155-15160.
39. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng 2006, 94 (4), 710-21.
40. Leschner, S.; Westphal, K.; Dietrich, N.; Viegas, N.; Jablonska, J.; Lyszkiewicz, M.; Lienenklaus, S.; Falk, W.; Gekara, N.; Loessner, H.; Weiss, S., Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 2009, 4 (8), e6692.
41. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989, 49 (23), 6449-65.
42. Middlebrook, J. L.; Dorland, R. B., Bacterial toxins: cellular mechanisms of action. Microbiol Rev 1984, 48 (3), 199-221.
43. Lee, C. H.; Lin, S. T.; Liu, J. J.; Chang, W. W.; Hsieh, J. L.; Wang, W. K., Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther 2014, 21 (3), 309-16.
44. Sznol, M.; Lin, S. L.; Bermudes, D.; Zheng, L. M.; King, I., Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000, 105 (8), 1027-30.
45. Phan, T. X.; Nguyen, V. H.; Duong, M. T.; Hong, Y.; Choy, H. E.; Min, J. J., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 2015, 59 (11), 664-75.
46. Sfondrini, L.; Rossini, A.; Besusso, D.; Merlo, A.; Tagliabue, E.; Mènard, S.; Balsari, A., Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 2006, 176 (11), 6624-30.
47. Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M., Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2010, 2 (44), 44ra57.
48. Flentie, K.; Kocher, B.; Gammon, S. T.; Novack, D. V.; McKinney, J. S.; Piwnica-Worms, D., A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy. Cancer Discov 2012, 2 (7), 624-37.
49. Jiang, S. N.; Park, S. H.; Lee, H. J.; Zheng, J. H.; Kim, H. S.; Bom, H. S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S. C.; Ntziachristos, V.; Choy, H. E.; Min, J. J., Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 2013, 21 (11), 1985-95.
50. Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm, M.; Heise, U.; Zimmermann, K.; Erhardt, M.; Weiss, S., Local application of bacteria improves safety of Salmonella -mediated tumor therapy and retains advantages of systemic infection. Oncotarget 2017, 8 (30), 49988-50001.
51. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant Escherichia coli expressing invasin targets the Peyer′s patches: the basis for a bacterial formulation for oral vaccination. Mol Ther 2006, 14 (2), 183-91.
52. Cunningham, C.; Nemunaitis, J., A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 2001, 12 (12), 1594-6.
53. Ghoneum, M.; Wang, L.; Agrawal, S.; Gollapudi, S., Yeast therapy for the treatment of breast cancer: a nude mice model study. In Vivo 2007, 21 (2), 251-8.
54. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014, 8 (6), 2359-2366.
55. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
56. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P., Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 2018, 12 (1), 13-23.
57. Kudryavtsev, A. V.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Le Fort-Piat, N., Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31 (7), 69.
58. Callister, W.; Rethwisch, D., Material Science and Engineering – An Introduction. 2007.
59. Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A., High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1927), 4439-4451.
60. Pate, K.; Safier, P., 12 - Chemical metrology methods for CMP quality. In Advances in Chemical Mechanical Planarization (CMP), Babu, S., Ed. Woodhead Publishing: 2016; pp 299-325.
61. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances 2014, 4 (95), 52883-52886.
62. Parlindungan, E.; Dekiwadia, C.; Jones, O. A. H., Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry 2021, 107, 18-26.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明