博碩士論文 110223056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:52.15.231.106
姓名 游懷真(Huai-Chen Yu)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis and biological evaluation of pyrazole derivatives as antitumor agents)
相關論文
★ Design and Synthesis of Mono-, Di-, Tri- and Tetraindoles Derivatives as Novel Histone Deacetylase Inhibitors★ Natural amino acid conjugates of lithocholic acid as α-2,6-sialyltransferase inhibitors with antimigratory and antiangiogenic activity
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 吡唑是一個重要的藥理特徵結構和極具意義的特殊骨架,它是一種
由五個成員的異環組成的結構,具有強大的藥理特徵,廣泛的治療包括
抗炎、抗微生物、抗焦慮、抗癌等。
石膽酸本身針對唾液酸轉移酶也有抑制效果,故設計藥物分子的想
法是將吡唑合成到石膽酸的結構中,並研究能否達成更佳的抗癌效果。
我們合成出了 YHC001-YHC010 的化合物進行藥物毒性的相關生物學
評估。
其中,YHC001 對於 MDA-MB-231 細胞具有毒性,且針對唾液酸
轉移酶亦有抑制效果。未來希望能夠以此結構為基礎更進一步合成出
相關的衍生物去測試對於癌細胞的相關治療效果。
摘要(英) Pyrazole serves as a crucial pharmacological feature structure and a
remarkably meaningful unique scaffold. It is a structure composed of a five membered heterocycle, possessing potent pharmacological characteristics
and a wide range of therapeutic applications, including anti-inflammatory,
antimicrobial, anxiolytic and anticancer activities.
Lithocholic acid itself exhibits inhibitory effects on sialyltransferase.
Therefore, the idea behind designing drug molecules is to incorporate
pyrazole into the structure of lithocholic acid to explore the potential for
enhanced anticancer effects. We synthesized compounds YHC001 to
YHC010 and conducted relevant biological evaluations.
Among them, YHC001 demonstrated cytotoxicity against MDA-MB231 cells and exhibited inhibitory effects on sialyltransferase. In the future,
it is hoped that this structure can serve as a basis for further synthesis of
related derivatives to evaluate their therapeutic effects on other cancer cells.
關鍵字(中) ★ 吡唑
★ 石膽酸
關鍵字(英) ★ Pyrazole
★ Lithocholic acid
論文目次 中文摘要........................................................................................................i
Abstract........................................................................................................ii
Table of Contents .......................................................................................iii
List of Figures.............................................................................................vi
List of Tables .............................................................................................vii
List of Schemes.........................................................................................viii
List of Abbreviation...................................................................................ix
Chapter I Introduction ............................................................................... 1
1-1 Background.......................................................................................... 1
1-2 Metastasis process ............................................................................... 2
1-3 Glycoconjugates .................................................................................. 3
1-4 Glycosylation facilitates the acquisition of all cancer hallmark
capabilities. ................................................................................................ 5
1-5 Sialic acid............................................................................................. 7
1-6 Sialyltransferase................................................................................... 9
1-7 Sialyltransferase inhibitors................................................................ 12
1-7-1 Inhibitor of acceptor analogs....................................................... 12
1-7-2 Inhibitor of donor analogs........................................................... 14
1-7-3 Inhibitor of transition-state analogs............................................ 16
1-7-4 Other sialytransferase inhibitors ................................................. 17
1-8 Triple-negative breast cancer (TNBC).............................................. 18
1-9 Research motivation .......................................................................... 19
Chapter II Result and discussion............................................................. 20
2-1 Retrosynthetic analysis of pyrazole derivatives................................ 20
2-2 Synthesis strategy .............................................................................. 22
2-2-1 Synthesis of YHC001 and YHC002 .......................................... 22
2-2-2 Synthesis of YHC003 - YHC010............................................... 23
2-2-3 Synthesis of intermediate of YHC003........................................ 24
2-2-4 Synthesis of intermediate of YHC010........................................ 25
2-3 The isomers produced during the chemical synthesis process.......... 26
2-4 Biological experiments in vitro studies............................................. 31
2-4-1 Cytotoxicity of YHC001-YHC010 in MDA-MB-231 cell........ 31
2-4-2 Bioactivity on ST3Gal I and ST6Gal I ....................................... 33
2-4-3 Anti-migration effect of YHC001-YHC010.............................. 35
Chapter Ⅲ Conclusion............................................................................. 38
Chapter IV Material and Methods.......................................................... 39
4-1 General procedure.............................................................................. 39
4-2 Synthetic method ............................................................................... 40
4-2-1 Synthesis of intermediate of YHC001........................................ 40
4-2-2 Synthesis of YHC001 ................................................................. 43
4-2-3 Synthesis of YHC002 ................................................................. 44
4-2-4 Synthesis of intermediates of YHC003-YHC010...................... 45
4-2-5 Synthesis of intermediate of YHC003........................................ 46
4-2-6 Synthesis of YHC003 ................................................................. 47
4-2-7 Synthesis of YHC004 ................................................................. 48
4-2-8 Synthesis of YHC005 ................................................................. 50
4-2-9 Synthesis of YHC006 ................................................................. 51
4-2-10 Synthesis of YHC007 ............................................................... 53
4-2-11 Synthesis of YHC008 ............................................................... 54
4-2-12 Synthesis of YHC009 ............................................................... 56
4-2-13 Synthesis of intermediate of YHC010...................................... 57
v
4-2-14 Synthesis of YHC010 ............................................................... 58
4-3 Bioassay methods.............................................................................. 59
4-3-1 Cell line used in bioassay............................................................ 59
4-3-2 MTT cytotoxicity assay .............................................................. 60
4-3-3 Sialyltransferase activity assay ................................................... 60
4-3-4 Transwell migration assay .......................................................... 61
Chapter V Reference................................................................................. 63
Chapter VI Spectra Appendix ................................................................. 68
參考文獻 1. Adeel, M.; Duzagac, F.; Canzonieri, V.; Rizzolio, F., Self-Therapeutic
Nanomaterials for Cancer Therapy: A Review. ACS Applied Nano Materials
2020, 3 (6), 4962-4971.
2. 衛生福利部國民衛生署 111 年國人死因統計結果
https://www.mohw.gov.tw/cp-16-74869-1.html
3. Fu, C.-W.; Tsai, H.-E.; Chen, W.-S.; Chang, T.-T.; Chen, C.-L.; Hsiao,
P.-W.; Li, W.-S., Sialyltransferase Inhibitors Suppress Breast Cancer
Metastasis. J. Med. Chem. 2021, 64 (1), 527-542.
4. Cheung, K. J.; Ewald, A. J., A collective route to metastasis: Seeding by
tumor cell clusters. Science 2016, 352 (6282), 167-169.
5. Rodrigues, J. G.; Balmaña, M.; Macedo, J. A.; Poças, J.; Fernandes, Â.;
de-Freitas-Junior, J. C. M.; Pinho, S. S.; Gomes, J.; Magalhães, A.; Gomes,
C.; Mereiter, S.; Reis, C. A., Glycosylation in cancer: Selected roles in
tumour progression, immune modulation and metastasis. Cellular
Immunology 2018, 333, 46-57.
6. Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and
clinical implications. Nature Reviews Cancer 2015, 15 (9), 540-555.
7. Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L., Alterations in
glycosylation as biomarkers for cancer detection. Journal of clinical
pathology 2010, 63 (4), 322-9.
8. Munkley, J.; Elliott, D. J., Hallmarks of glycosylation in cancer.
Oncotarget 2016, 7, 35478 - 35489.
9. Marth, J. D.; Grewal, P. K., Mammalian glycosylation in immunity.
Nature Reviews Immunology 2008, 8 (11), 874-887.
10. Ghosh, S., Chapter 1 - Sialic acid and biology of life: An introduction.
In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and
Disease, Ghosh, S., Ed. Academic Press: 2020; pp 1-61.
11. Schauer, R., Chemistry, metabolism, and biological functions of sialic
acids. Adv. Carbohydr. Chem. Biochem. 1982, 40, 131-234.
12. Carter, A.; Martin, N. H., Serum sialic acid levels in health and disease.
Journal of clinical pathology 1962, 15 (1), 69-72.
13. Schauer, R.; Kamerling, J. P., Exploration of the Sialic Acid World. Adv.
Carbohydr. Chem. Biochem. 2018, 75, 1-213.
14. Li, Y.; Chen, X., Sialic acid metabolism and sialyltransferases: natural
functions and applications. Appl. Microbiol. Biotechnol. 2012, 94 (4), 887-
905.
15. Lee, Y.-C.; Kaufmann, M.; Kitazume-Kawaguchi, S.; Kono, M.;
Takashima, S.; Kurosawa, N.; Liu, H.; Pircher, H.; Tsuji, S., Molecular
Cloning and Functional Expression of Two Members of Mouse
NeuAcα2,3Galβ1,3GalNAc GalNAcα2,6-Sialyltransferase Family,
ST6GalNAc III and IV*. J. Biol. Chem. 1999, 274 (17), 11958-11967.
16. Harduin-Lepers, A.; Krzewinski-Recchi, M. A.; Colomb, F.; Foulquier,
F.; Groux-Degroote, S.; Delannoy, P., Sialyltransferases functions in cancers.
Frontiers in bioscience (Elite edition) 2012, 4 (1), 499-515.
17. Kitagawa, H.; Paulson, J. C., Cloning of a novel alpha 2,3-
sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate
groups. J. Biol. Chem. 1994, 269 (2), 1394-1401.
18. Lehmann, F.; Kelm, S.; Dietz, F.; von Itzstein, M.; Tiralongo, J., The
evolution of galactose alpha2,3-sialyltransferase: Ciona intestinalis
ST3GAL I/II and Takifugu rubripes ST3GAL II sialylate Galbeta1,3GalNAc
structures on glycoproteins but not glycolipids. Glycoconj J 2008, 25 (4),
323-34.
19. Harduin-Lepers, A.; Vallejo-Ruiz, V.; Krzewinski-Recchi, M. A.;
Samyn-Petit, B.; Julien, S.; Delannoy, P., The human sialyltransferase family.
Biochimie 2001, 83 (8), 727-37.
20. Sjoberg, E. R.; Kitagawa, H.; Glushka, J.; van Halbeek, H.; Paulson, J.
C., Molecular cloning of a developmentally regulated Nacetylgalactosamine alpha2,6-sialyltransferase specific for sialylated
glycoconjugates. J. Biol. Chem. 1996, 271 (13), 7450-9.
21. Tsuji, S., Sialyltransferase superfamily: structure and function.
Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 1998, 43 (16
Suppl), 2338-48.
22. Bowles, W. H. D.; Gloster, T. M., Sialidase and Sialyltransferase
Inhibitors: Targeting Pathogenicity and Disease. Frontiers in Molecular
Biosciences 2021, 8.
23. Dobie, C.; Skropeta, D., Insights into the role of sialylation in cancer
progression and metastasis. British Journal of Cancer 2021, 124 (1), 76-90.
24. Jung, K.-H.; K, H.; Schwörer, R.; Schmidt, Sialyltransferase Inhibitors.
Trends in Glycoscience and Glycotechnology 2003, 85, 275-289.
25. <唾液酸轉移酶抑制劑的設計與發現.pdf>.
26. Schwörer, R.; Schmidt, R. R., Efficient Sialyltransferase Inhibitors
Based on Glycosides of N-Acetylglucosamine. J. Am. Chem. Soc. 2002, 124
(8), 1632-1637.
27. Volkers, G.; Lizak, C.; Niesser, J.; Rosell, F. I.; Preidl, J.;
Gnanapragassam, V. S.; Horstkorte, R.; Rademann, J.; Strynadka, N. C. J.,
Structural Basis for Binding of Fluorescent CMP-Neu5Ac Mimetics to
Enzymes of the Human ST8Sia Family. ACS Chemical Biology 2018, 13 (8),
2320-2328.
28. Müller, B.; Schaub, C.; Schmidt, R. R., Efficient Sialyltransferase
Inhibitors Based on Transition-State Analogues of the Sialyl Donor. Angew.
Chem. Int. Ed. Engl. 1998, 37 (20), 2893-2897.
29. Wu, C. Y.; Hsu, C. C.; Chen, S. T.; Tsai, Y. C., Soyasaponin I, a potent
and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun.
2001, 284 (2), 466-9.
30. Hsu, C. C.; Lin, T. W.; Chang, W. W.; Wu, C. Y.; Lo, W. H.; Wang, P. H.;
Tsai, Y. C., Soyasaponin-I-modified invasive behavior of cancer by changing
cell surface sialic acids. Gynecologic oncology 2005, 96 (2), 415-22.
31. Lin, T.-W.; Chang, W.-W.; Chen, C.-C.; Tsai, Y.-C., Stachybotrydial, a
potent inhibitor of fucosyltransferase and sialyltransferase. Biochem.
Biophys. Res. Commun. 2005, 331 (4), 953-957.
32. Liao, M.; Zhang, J.; Wang, G.; Wang, L.; Liu, J.; Ouyang, L.; Liu, B.,
Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current
Situation and Future Directions. J. Med. Chem. 2021, 64 (5), 2382-2418.
33. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2020. CA: a
cancer journal for clinicians 2020, 70 (1), 7-30.
34. Choi, J.; Jung, W. H.; Koo, J. S., Clinicopathologic features of molecular
subtypes of triple negative breast cancer based on immunohistochemical
markers. Histology and histopathology 2012, 27 11, 1481-93.
35. Lang, D. K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S., NitrogenContaining Heterocycles as Anticancer Agents: An Overview. Anti-cancer
agents in medicinal chemistry 2020, 20 (18), 2150-2168.
36. Heravi, M. M.; Zadsirjan, V., Prescribed drugs containing nitrogen
heterocycles: an overview. RSC Advances 2020, 10 (72), 44247-44311.
指導教授 李文山 侯敦仁(Wen-Shan Li Duen-Ren Hou) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明