博碩士論文 110225022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.239.170.244
姓名 吳竣楷(Chun-Kai Wu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 加速趨勢更新過程於鋰離子電池衰變資料之貝氏分析
(Bayesian Modeling of Accelerated Trend Renewal Processes for Lithium-ion Battery Data)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-11以後開放)
摘要(中) 在研究鋰電池壽命的試驗中,常以電池完成一次充放電的過程為週期,觀察其電容、電壓或電流等品質特徵值隨週期變化的衰變試驗評估其壽命,而當品質特徵值下降到初始值的特定百分比之臨界值時判定電池性能終止(end of performance, EOP),因此品質特徵值首次達性能終止之週期數可定義為電池使用壽命。將電池置於比正常環境應力(如溫度、壓力和放電率等) 更嚴苛環境下進行加速衰變試驗可以得到較完整的資訊,並經由外插得正常應力之壽命推論。本文以貝氏逆高斯(inverse Gaussian) 加速趨勢更新過程(accelerated trend-renewal process, ATRP) 模型,在參數與放電電流呈對數線性關係時配適電池在不同放電電流下之充放電電容資料,經外插推估於正常放電電流下的壽命。另一方面,由於製造成分和化學反應使得電池間存在差異性,一般以模型中參數具隨機效應分配來描述此差異,然而ATRP 模型不具共軛性,文獻上未見關於隨機效應的討論。本文嘗試利用階層貝氏(hierarchical Bayes) 方法,配合馬可夫鍊蒙地卡羅(Markov chain Monte-Carlo) 演算法,分別建構三種隨機效應ATRP 模
型,經由貝氏模型選擇(model selection) 準則決定最適合的衰變模型,據以推估電池在正常應力下的壽命分配,同時利用蒙地卡羅模擬驗證計算的合理性。最後應用一筆實際電池充放電資料,說明所提方法之可行性。
摘要(英) In studying the lifetime of Lithium-ion batteries, analysis is often performed using data collected from the cyclic charge-discharge tests such as capacity, current and voltage, so called the quality characteristic (QC). The evaluation of battery lifetime is defined by the first cycle of QC value dropping to a specific threshold, known as the end of performance (EOP). Accelerated degradation tests are conducted under severer stress conditions than the normal use condition, such as temperature, pressure, and discharge rate, to fasten the test and to collect more comprehensive information. Extrapolation is performed to estimate the lifetime under normal use condition. This study utilizes the inverse Gaussian accelerated trend-renewal process (ATRP) model in analyzing the discharge-capacity batteries data under different discharge currents, by assuming a log-linear relationship between model parameter and discharge current. Random-effect models are considered to describe the unit-to-unit variation among batteries by accommodating random parameter in the ATRP models. A hierarchical Bayesian approach incorporating with latent variables is adopted with the aid of the Markov chain Monte Carlo (MCMC) procedure
to three ATRP random-effect models. Predictive lifetime inference is deduced under the most appropriate model through Bayesian model selection. Monte Carlo simulations are used to validate the calculation. The proposed method is applied to a real Lithium-ion battery data set and it demonstrates the feasibility of the methodology.
關鍵字(中) ★ 可修復系統
★ 趨勢更新過程
★ 預測分配
★ DIC
★ 邊際密度函數
關鍵字(英) ★ repairable system
★ trend-renewal process
★ predictive distribution
★ DIC
★ marginal likelihood
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景和動機 1
1.2 文獻探討 3
1.3 研究方法 5
1.4 本文架構 5
第二章 趨勢更新過程 6
2.1 定義與符號 6
2.2 趨勢更新過程模型 7
2.3 貝氏架構 9
2.3.1 固定效應模型 10
2.3.2 隨機效應模型 10
2.4 TRP 模型之貝氏模型選擇 13
2.4.1 偏差訊息法則 13
2.4.2 對數邊際概似函數 14
第三章 加速趨勢更新過程模型和壽命推論 16
3.1 ATRP 模型架構 16
3.2 ATRP 模型之貝氏架構 18
3.3 ATRP 模型之壽命推論 20
3.3.1 失效時間分配 20
3.3.2 性能終止時間 22
第四章 實例分析與模擬研究 24
4.1 鋰離子電池循環充放電資料 24
4.1.1 衰變資料分析 25
4.1.2 貝氏壽命推論 28
4.2 模擬研究 33
參考文獻 40
參考文獻 [1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions
on Automatic Control, 19, 716-723.
[2] Barr´e, A., Deguilhem, B., Grolleau, S., G´erard, M., Suard, F. and Riu, D. (2013).
A review on lithium-ion battery ageing mechanisms and estimations for automotive
applications, Journal of Power Sources, 241, 680-689.
[3] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second
Edition), Springer-Verlag, New York.
[4] Carlin, B. P. and Louis, T. A. (2008). Bayesian Methods for Data Analysis, CRC
press, London.
[5] Chib, S. (1995). Marginal likelihood from the Gibbs output, Journal of the American
Statistical Association, 90, 1313-1321.
[6] Doyle, M. and Newman, J. (1995). Modeling the performance of rechargeable
lithium-based cells: design correlations for limiting cases, Journal of Power Sources,
54, 46-51.
[7] Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: asymptotics and
exact calculations, Journal of the Royal Statistical Society: Series B, 56, 501-514.
[8] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D.
B. (2013). Bayesian Data Analysis (Third Edition), CRC press, London.
[9] Gelman, A., Simpson, D. and Betancourt, M. (2017). The prior can often only be
understood in the context of the likelihood, Entropy, 19, 555.
[10] He, W., Williard, N., Osterman, M. and Pecht, M. (2011). Prognostics of lithium-ion
batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method,
Journal of Power Sources, 196, 10314-10321.
[11] Heggland, K. and Lindqvist, B. H. (2007). A non-parametric monotone maximum
likelihood estimator of time trend for repairable system data, Reliability Engineering
and System Safety, 92, 575-584.
[12] Jokiel-Rokita, A. and Magiera, R. (2012). Estimation of parameters for trendrenewal
processes, Statistics and Computing, 22, 625-637.
[13] Kozlowski, J. (2003). Electrochemical cell prognostics using online impedance measurements
and model-based data fusion techniques, 2003 IEEE Aerospace Conference
Proceedings, 7, 3257-3270.
[14] Lindqvist, B. H. (2006). On the statistical modeling and analysis of repairable
systems, Statistical Science, 21, 532-551.
[15] Lindqvist, B. H., Elvebakk, G. and Heggland, K. (2003). The trend-renewal process
for statistical analysis of repairable systems, Technometrics, 45, 31-44.
[16] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22,
1142-1160.
[17] Meng, X. L. and Wong, W. H. (1996). Simulating ratios of normalizing constants
via a simple identity: a theoretical exploration, Statistica Sinica, 831-860.
[18] Micea, M. V., Ungurean, L., Crstoiu, G. N. and Groza, V. (2011). Online state-ofhealth
assessment for battery management systems, IEEE Transactions on Instrumentation
and Measurement, 60, 1997-2006.
[19] Mishra, M., Martinsson, J., Rantatalo, M. and Goebel, K. (2018). Bayesian hierarchical
model-based prognostics for lithium-ion batteries. Reliability Engineering
and System Safety, 172, 25-35.
[20] Palayangoda, L. K., Butler, R. W., Ng, H. K. T., Yang, F. and Tsui, K. L. (2022).
Evaluation of mean-time-to-failure based on nonlinear degradation data with applications,
IISE Transactions, 54, 286-302.
[21] Pajovic, M., Orlik, P. and Wada, T. (2018). Remaining useful life estimation of
batteries using Dirichlet process with variational Bayes inference, In IECON 2018-
44th Annual Conference of the IEEE Industrial Electronics Society, 2729-2735.
[22] Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty
in generalised linear models, Biometrika, 83, 251-266.
[23] Serfozo, R. (2009). Basics of Applied Stochastic Processes, Springer Science and
Business Media.
[24] Skare, Ø., Blviken, E. and Holden, L. (2003). Improved sampling-importance resampling
and reduced bias importance sampling, Scandinavian Journal of Statistics,
30, 719-737.
[25] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Linde, A. (2014). The deviance
information criterion: 12 years on, Journal of the Royal Statistical Society Series B,
76, 485-493.
[26] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit, Journal of the Royal Statistical
Society: Series B, 64, 583-639.
[27] Wang, Y. F. and Fan, T. H. (2012). Bayesian analysis of the structural equation
models with application to a longitudinal myopia trial, Statistics in Medicine, 31,
188-120.
[28] Wang, Y. F., Tseng, S. T., Lindqvist, B. H. and Tsui, K. L. (2019). End of performance
prediction of lithium-ion batteries, Journal of Quality Technology, 51,
198-213.
[29] Xing, Y., Ma, E. W., Tsui, K. L. and Pecht, M. (2013). An ensemble model for predicting
the remaining useful performance of lithium-ion batteries, Microelectronics
Reliability, 53, 811-820.
[30] Yang, F., Wang, D., Zhao, Y., Tsui, K.-L. and Bae, S.J. (2018). A study of the
relationship between coulombic efficiency and capacity degradation of commercial
lithium-ion batteries, Energy, 145, 486-495.
[31] Zhang, J. and Lee, J. (2011). A review on prognostics and health monitoring of
Li-ion battery, Journal of Power Pources, 196, 6007-6014.
[32] 吳璟賢(2016). 電池壽命的EOP 推論及其最適實驗配置問題,國立清華大學碩士
論文。
[33] 林心玹(2022). 趨勢更新過程之貝氏可靠度分析及其在鋰電池資料的應用,國立
中央大學碩士論文。
[34] 劉軒彤(2017). TRP 隨機效應模型之建構與應用,國立清華大學碩士論文。
指導教授 樊采虹(Tsai-Hung Fan) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明