博碩士論文 110226027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.119.133.228
姓名 黃囿菘(You-Song Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 像素級超穎介面色彩路由器之設計與製作
(Design and fabrication of Pixelate metasurfaces for color router)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 混合式超穎介面於感光元件之應用★ 以自製灰階曝光機製作各式微光學元件
★ 高效率低深寬比幾何相位超穎介面★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔
★ 奈米壓印技術製作全介電光學繞射元件★ 全介電幾何相位超穎表面的設計、優化及簡化模型
★ 以超穎校正器提升三片式庫克鏡組光學品質之研究★ 全介電幾何相位超穎表面的 抗反射設計
★ 藉由散射強化輻射冷卻發電之研究★ 以人工智慧模型修復超穎透鏡影像品質之研究
★ 基於波導共振之手鏡超穎介面之研究★ 用於屏下螢幕顯示的相位共軛超穎表面設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 在這感測器需求量大增的世代中, CMOS感測器目前一直追求像素的小型化,而像素的小型化將帶來效率低下以及衍生出來的低靈敏度問題。而傳統的CMOS感測器中的色彩濾波器方案受限於先天結構的影響,將使問題變得更加嚴重,而近年來受到廣泛關注的超穎表面色彩路由器可以將特定波長的光引導到對應的像素中進而使效率提高。這樣一來,正好可以克服效率與靈敏度的問題。但在微小像素中塞入許多奈米結構並不易於製作。
本篇論文中我們提出一個基於全介電質奈米結構設計出拜耳式排列的色彩路由器,我們在1.6 µm*1.6 µm的單位晶胞下僅放入4個對應像素的奈米圓柱,並且運用基因演算法對結構參數優化。在我們所設計的兩個方案中,在模擬上RGB效率分別可以達到57.16%、46.88%、49.94%與58.47%、52.98%、32.77%,並且能量大部份分佈在各顏色像素的中心,來避免光線落入低感光區域的問題。在製程方面,最終結構尺寸是有機會使用Krf掃描式曝光機進行低成本量產製造。
摘要(英) In this era of increased demand for sensors, CMOS sensors have been continuously striving for pixel miniaturization. However, the downsizing of pixels brings inefficiency and the associated low sensitivity issues. Traditional color filter solutions are limited by their inherent structures, exacerbating these problems. In recent years, metasurface color routers have gained significant attention as they can efficiently route specific wavelength light to corresponding pixels, thereby improving efficiency. This approach effectively overcomes the challenges of efficiency and sensitivity. However, incorporating numerous nanoscale structures into tiny pixels poses fabrication challenges.
In this paper, we propose a metasurface color router based on an all-dielectric nanostructure arranged in a periodic pattern. We only place four nanocylinders corresponding to pixels in a 1.6 µm * 1.6 µm unit cell. We employ a genetic algorithm to optimize the structural parameters. In our two designed schemes, the simulated RGB efficiencies achieve 57.16%, 46.88%, 49.94% and 58.47%, 52.98%, 32.77%, respectively. Furthermore, the majority of the energy is concentrated at the centers of each color pixel, mitigating the issue of light falling into low photosensitive areas. In terms of the manufacturing process, there is a possibility to utilize a Krf scanner exposure machine to achieve low-cost mass production of the final structure.
關鍵字(中) ★ 色彩路由器
★ 超穎介面
★ 奈米圓柱
★ 基因演算法
★ 色彩濾色器
★ 互補式金屬氧化物半導體圖像感測器
關鍵字(英) ★ color router
★ metasurface
★ nanorod
★ genetic algorithms
★ color filter
★ CMOS image sensor
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第1章 緒論 1
1-1 研究背景 1
1-2 超穎介面 3
1-3 色彩濾波器文獻回顧 5
1-4 色彩路由器文獻回顧 13
1-5 研究目標 25
第2章 全介電質色彩路由器之設計原理與結果分析 27
2-1 結構選用 27
2-2 奈米圓柱材料選用 28
2-3 模擬參數設定 31
2-4 基因演算法 35
2-5 目標函數之定義 44
2-6 基因演算法優化之結果與分析 51
第3章 全介電質色彩路由器之製作與量測 68
3-1 色彩路由器之製作 68
3-2 色彩路由器之量測 76
第4章 結論 79
參考文獻 81
參考文獻 [1] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, and N. F. Yu, "Broadband achromatic dielectric metalenses ", Light-Science & Applications, Vol. 7, November 2018.
[2] C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, "Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks ", Scientific Reports, Vol. 7, no. 1, p.2556, May 2017.
[3] S. Wang, Z. L. Deng, Y. J. Wang, Q. B. Zhou, X. L. Wang, Y. Y. Cao, B. O. Guan, S. M. Xiao, and X. P. Li, "Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincare sphere polarizers ", Light-Science & Applications, Vol. 10, no. 1, January 2021.
[4] X. Y. Chen, H. J. Zou, M. Y. Su, L. W. Tang, C. F. Wang, S. Q. Chen, C. L. Su, and Y. Li, "All-Dielectric Metasurface-Based Beam Splitter with Arbitrary Splitting Ratio ", Nanomaterials, Vol. 11, no. 5, May 2021.
[5] A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Metasurface Broadband Solar Absorber ", Scientific Reports, Vol. 6, no. 1, p. 20347, February 2016.
[6] F. Balli, M. Sultan, S. K. Lami, and J. T. Hastings, "A hybrid achromatic metalens ", Nature Communications, Vol. 11, no. 1, August 2020.
[7] S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, "Efficient colour splitters for high-pixel-density image sensors ", Nature Photonics, Vol. 7, no. 3, pp. 240-246, March 2013.
[8] C.-Y. Yu, Q.-C. Zeng, C.-J. Yu, C.-Y. Han, and C.-M. Wang, "Scattering Analysis and Efficiency Optimization of Dielectric Pancharatnam–Berry-Phase Metasurfaces ", Nanomaterials, Vol. 11, no. 3, p. 586, April 2021.
[9] Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, "Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface ", Acs Photonics, Vol. 5, no. 2, pp. 663-+, February 2018.
[10] V. E. Babicheva and A. B. Evlyukhin, "Resonant Lattice Kerker Effect in Metasurfaces With Electric and Magnetic Optical Responses ", Laser & Photonics Reviews, Vol. 11, no. 6, November 2017.
[11] C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, "Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth ", Scientific Reports, Vol. 6, October 2016.
[12] T. Ellenbogen, K. Seo, and K. B. Crozier, "Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry ", Nano Letters, Vol. 12, no. 2, pp. 1026-1031, February 2012.
[13] S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic Color Filters for CMOS Image Sensor Applications ", Nano Letters, Vol. 12, no. 8, pp. 4349-4354, August 2012.
[14] V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Aluminum Plasmonics Based Highly Transmissive Polarization-Independent Subtractive Color Filters Exploiting a Nanopatch Array ", Nano Letters, Vol. 14, no. 11, pp. 6672-6678, November 2014.
[15] Y. Horie, S. Han, J. Y. Lee, J. Kim, Y. Kim, A. Arbabi, C. Shin, L. L. Shi, E. Arbabi, S. M. Kamali, H. S. Lee, S. Hwang, and A. Faraon, "Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies ", Nano Letters, Vol. 17, no. 5, pp. 3159-3164, May 2017.
[16] H. J. Liu, D. H. Quan, K. Li, Y. N. Zheng, F. Lou, S. Liu, Y. J. Liu, A. K. Srivastava, G. X. Li, C. F. Qiu, Z. J. Liu, and X. Cheng, "Dielectric Metasurface from Solution-Phase Epitaxy of ZnO Nanorods for Subtractive Color Filter Application ", Advanced Optical Materials, Vol. 9, no. 5, March 2021.
[17] I. Koirala, S. S. Lee, and D. Y. Choi, "Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars ", Optics Express, Vol. 26, no. 14, pp. 18320-18330, July 2018.
[18] E. Johlin, "Nanophotonic color splitters for high-efficiency imaging ", Iscience, Vol. 24, no. 4, April 2021.
[19] B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light ", Nano Letters, Vol. 17, no. 10, pp. 6345-6352, October 2017.
[20] M. J. Chen, L. Wen, D. H. Pan, D. R. S. Cumming, X. G. Yang, and Q. Chen, "Full-color nanorouter for high-resolution imaging ", Nanoscale, Vol. 13, no. 30, pp. 13024-13029, August 2021.
[21] M. Miyata, N. Nemoto, K. Shikama, F. Kobayashi, and T. Hashimoto, "Full-color-sorting metalenses for high-sensitivity image sensors ", Optica, Vol. 8, no. 12, pp. 1596-1604, December 2021.
[22] X. J. Zou, Y. M. Zhang, R. Y. Lin, G. X. Gong, S. M. Wang, S. N. Zhu, and Z. L. Wang, "Pixel-level Bayer-type colour router based on metasurfaces ", Nature Communications, Vol. 13, no. 1, June 2022.
[23] S. Yun, S. Roh, S. Lee, H. Park, M. Lim, S. Ahn, and H. Choo, "Highly Efficient Color Separation and Focusing in the Sub-micron CMOS Image Sensor," IEEE International Electron Devices Meeting (IEDM), pp. 30.1.1-30.1.4, December 2021.
[24] K. H. Chang, Y. C. Chen, Y. S. Huang, W. L. Hsu, G. H. Lu, C. F. Liu, C. J. Weng, Y. H. Lin, C. C. Chen, C. C. Lee, Y. C. Chang, P. H. Wang, and C. M. Wang, "Axicon metalens for broadband light harvesting ", Nanophotonics, Vol. 12, no. 7, pp. 1309-1315, March 2023.
[25] Y.-H. Liao, W.-L. Hsu, C.-Y. Yu, and C.-M. Wang, "Antireflection of optical anisotropic dielectric metasurfaces ", Scientific Reports, Vol. 13, no. 1, p. 1641, January 2023.
[26] L. H. Gao, F. Lemarchand, and M. Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering ", Optics Express, Vol. 20, no. 14, pp. 15734-15751, July 2012.
[27] S. Uenoyama and R. Ota, "40 x 40 Metalens Array for Improved Silicon Photomultiplier Performance ", Acs Photonics, Vol. 8, no. 6, pp. 1548-1555, June 2021.
[28] N. X. Li, Z. J. Xu, Y. Dong, T. Hu, Q. Z. Zhong, Y. H. Fu, S. Y. Zhu, and N. Singh, "Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab ", Nanophotonics, Vol. 9, no. 10, pp. 3071-3087, September 2020.
[29] J. S. Park, S. Y. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J. X. Cheng, and F. Capasso, "All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography ", Nano Letters, Vol. 19, no. 12, pp. 8673-8682, December 2019.
[30] Z. Xu, Y. Dong, Y. H. Fu, Q. Zhong, T. Hu, D. Li, Y. Li, N. Li, Y. Lin, Q. Lin, S. Zhu, and N. Singh, "Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer," Conference on Lasers and Electro-Optics (CLEO), May 2019.
指導教授 王智明(Chih-Ming Wang) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明