博碩士論文 110226057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.125.197
姓名 邱聖儒(Sheng-Ru Chiu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基二硫化鉬薄膜之製程與特性研究
(Research on the Fabrication Process and Properties of Silicon-based Molybdenum Disulfide Thin Film)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 二維材料二硫化鉬(MoS2)因其獨特的結構和特性,在下一代半導體材料中引起了廣泛的關注。本研究旨在開發一種直接在矽基SiO2薄膜生長二維MoS2薄膜的方法,減少轉印所造成的完整性,對準及雜質的影響,簡化製程的程序,並探索其作為半導體材料的潛力。
本研究使用低壓化學氣相沉積法(LPCVD)方式,於SiO2薄膜上直接生長MoS2薄膜,而SiO2用氧電漿預先處理,除了能有效去除SiO2表面的污染物,如塵埃、有機殘留物、水分等,還可以活化SiO2表面,增加其表面能,提高表面的反應性。這可以改善SiO2與其他材料之間的黏附力和界面特性,對於塗覆、薄膜沉積、電子束蒸鍍等工藝具有重要影響,有助於後續生長MoS2薄膜。
而生長出的樣品所量測到拉曼位移之△k為21cm-1以下的單層結構,PL量測得出MoS2為直接能隙的特性,AFM量測為0.712nm的單層厚度,HR-TEM量測層間距為0.638nm。
該研究證明出以氧電漿處理過後的基板所生長的MoS2薄膜,可達到與在Sapphire上生長及轉印到SiO2基板上的MoS2薄膜有相同品質、均勻性良好及單層結構的結果,未來可以更廣泛的應用於電子及光電元件。
摘要(英) The two-dimensional 2D material molybdenum disulfide (MoS2) has attracted much attention as a next-generation semiconductor material due to its unique structure and properties. The aim of this study is to deposit two-dimensional MoS2 films directly on Si-based SiO2 films by simplify the process procedures to reduce the effects of influences, alignment and defects caused by transfer printing, and to explore its potential as the next-generation semiconductor material.
In this study, MoS2 films were grown directly on SiO2 films using low pressure chemical vapor deposition (LPCVD). The SiO2 films were pretreated with oxygen plasma to remove contaminants on the SiO2 surface, such as dust, organic residues, and moisture, etc. And activate the SiO2 surface, increase its surface energy, and improve the reactivity of the surface can be improved. The adhesion and interfacial properties between SiO2 and 2D materials to improve the growth of MoS2 films.
The Raman shift Δk of the MoS2 samples were 21 cm-1 or less to be confirmed as the monolayer structure. The PL measurement showed that the MoS2 films were direct energy gap. The thickness of the MoS2 monolayer was 0.712 nm measured by AFM. The spacing between the layers was measured to be 0.638 nm measured by HR-TEM.
This study demonstrated that MoS2 films grown on oxygen plasma-treated substrates can achieve the same quality, good uniformity, and monolayer structure as MoS2 films grown on Sapphire. The results show the MoS2 films can be used for a wider range of electronic and optoelectronic applications in the future.
關鍵字(中) ★ 二硫化鉬 關鍵字(英) ★ Molybdenum Disulfide
論文目次 摘要 vi
Abstract vii
誌謝 viii
目錄 ix
圖目錄 xii
第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究目的與方法 3
2 第二章、基礎理論及文獻回顧 6
2-1 二硫化鉬的特性 6
2-1-1 二硫化鉬的晶體結構 6
2-1-2 二硫化鉬的光學特性 10
2-2 文獻回顧 11
2-2-1 二硫化鉬的製備方式 11
3 第三章、實驗架構與分析儀器介紹 19
3-1 實驗方法 19
3-1-1 氧電漿表面前處理(Oxygen Plasma Surface Treatment) 19
3-1-2 低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition, LPCVD) 20
3-1-3 實驗流程 21
3-1-4 二硫化鉬薄膜轉印製程流程 23
3-2 分析儀器 24
3-2-1 拉曼光譜儀(Raman Spectrometer) 24
3-2-2 光致發光光譜儀(Photoluminescence Spectrometer, PL) 26
3-2-3 光學顯微鏡(Optical Microscope, OM) 26
3-2-4 接觸角量測儀(Contact Angle, CA ) 27
3-2-5 高解析度穿透式電子顯微鏡(High Resolution-Transmission Electron Microscope, HR-TEM) 28
3-2-6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 29
3-2-7 原子力顯微鏡(Atomic Force Microscope, AFM) 30
4 第四章、實驗結果 31
4-1 不同基板擺放方式生長之二硫化鉬之分析 31
4-1-1 基板以倒蓋方式生長二硫化鉬之分析 31
4-1-2 基板以平放方式生長二硫化鉬之分析 33
4-2 有無基板前處理生長之二硫化鉬薄膜之分析 35
4-2-1 於700℃生長二硫化鉬薄膜有無前處理之分析 35
4-2-2 調變基板前處理時間之分析 37
4-3 調變生長溫度與硫化時間點之分析 39
4-3-1 調變生長溫度之分析 39
4-3-2 於650℃生長並調變硫化時間點之分析 41
4-3-3 於700℃生長並調變硫化時間點之分析 43
4-3-4 於750℃生長並調變硫化時間點之分析 44
4-4調變前驅物重量之二硫化鉬薄膜之分析 46
4-4-1調變三氧化鉬重量之分析 46
4-4-2調變硫粉重量之分析 48
4-5轉印及直接生長二硫化鉬薄膜元素及表面之分析 50
4-5-1以氯化鈉生長並轉印二硫化鉬薄膜元素與表面之分析 50
4-5-2直接於SiO2基板生長二硫化鉬薄膜元素與表面之分析 53
5 第五章、結論與未來展望 57
5-1 實驗結論 57
5-2 未來展望 58
參考文獻 59
參考文獻 [1] T. George et al., "Graphene and beyond-graphene 2D crystals for next-generation green electronics," vol. 9083, p. 908305, 2014.
[2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[3] Y. Wu, D. B. Farmer, F. Xia, and P. Avouris, "Graphene Electronics: Materials, Devices, and Circuits," Proceedings of the IEEE, vol. 101, no. 7, pp. 1620-1637, 2013.
[4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat Nanotechnol, vol. 7, no. 11, pp. 699-712, Nov 2012.
[5] R. Ganatra and Q. Zhang, "Few-layer MoS2: a promising layered semiconductor," ACS nano, vol. 8, no. 5, pp. 4074-4099, 2014.
[6] F. Wu et al., "Vertical MoS2 transistors with sub-1-nm gate lengths," Nature, vol. 603, no. 7900, pp. 259-264, 2022.
[7] L. Gomez, I. berg, and J. L. Hoyt, "Electron Transport in Strained-Silicon Directly on Insulator Ultrathin-Body n-MOSFETs With Body Thickness Ranging From 2 to 25 nm," IEEE Electron Device Letters, vol. 28, no. 4, pp. 285-287, 2007.
[8] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science, vol. 319, no. 5867, pp. 1229-32, Feb 29 2008.
[9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011.
[10] E. Granneman, "Thin films in the integrated circuit industry: requirements and deposition methods," Thin Solid Films, vol. 228, no. 1-2, pp. 1-11, 1993.
[11] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky, and M. Pumera, "3R phase of MoS(2) and WS(2) outperforms the corresponding 2H phase for hydrogen evolution," Chem Commun (Camb), vol. 53, no. 21, pp. 3054-3057, Mar 9 2017.
[12] Q. Ding, B. Song, P. Xu, and S. Jin, "Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds," Chem, vol. 1, no. 5, pp. 699-726, 2016.
[13] D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, "Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates," Advanced Functional Materials, vol. 22, no. 9, pp. 1894-1905, 2012.
[14] H. Xu et al., "2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution," Applied Catalysis B: Environmental, vol. 220, pp. 379-385, 2018.
[15] C. Backes et al., "Functionalization of liquid-exfoliated two-dimensional 2H-MoS2," Angew Chem Int Ed Engl, vol. 54, no. 9, pp. 2638-42, Feb 23 2015.
[16] S. Wang et al., "Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition," Chemistry of Materials, vol. 26, no. 22, pp. 6371-6379, 2014.
[17] C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, "A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16354-16361, 2011.
[18] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[19] N. A. Lanzillo et al., "Temperature-dependent phonon shifts in monolayer MoS2," Applied Physics Letters, vol. 103, no. 9, 2013.
[20] A. Kumar and P. Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors," The European Physical Journal B, vol. 85, pp. 1-7, 2012.
[21] Y. Kim, H. Bark, G. H. Ryu, Z. Lee, and C. Lee, "Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S," J Phys Condens Matter, vol. 28, no. 18, p. 184002, May 11 2016.
[22] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS(2): a new direct-gap semiconductor," Phys Rev Lett, vol. 105, no. 13, p. 136805, Sep 24 2010.
[23] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Lett, vol. 11, no. 12, pp. 5111-6, Dec 14 2011.
[24] M. Okada et al., "Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition," ACS nano, vol. 16, no. 8, pp. 13069-13081, 2022.
[25] T. Jurca et al., "Low-Temperature Atomic Layer Deposition of MoS(2) Films," Angew Chem Int Ed Engl, vol. 56, no. 18, pp. 4991-4995, Apr 24 2017.
[26] H. Park et al., "Exceptionally Uniform and Scalable Multilayer MoS(2) Phototransistor Array Based on Large-Scale MoS(2) Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization," ACS Appl Mater Interfaces, vol. 12, no. 18, pp. 20645-20652, May 6 2020.
[27] Z. Zhu et al., "Effect of precursor ratio on the morphological and optical properties of CVD-grown monolayer MoS2 nanosheets," Materials Research Express, vol. 8, no. 4, p. 045008, 2021.
[28] N. Choudhary, J. Park, J. Y. Hwang, and W. Choi, "Growth of large-scale and thickness-modulated MoS2 nanosheets," ACS applied materials & interfaces, vol. 6, no. 23, pp. 21215-21222, 2014.
[29] J. Jeon et al., "Layer-controlled CVD growth of large-area two-dimensional MoS 2 films," Nanoscale, vol. 7, no. 5, pp. 1688-1695, 2015.
[30] L. Sun et al., "Chemical vapour deposition," Nature Reviews Methods Primers, vol. 1, no. 1, p. 5, 2021.
[31] 黃柏智, "低溫生長大面積二維二硫化鉬薄膜之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022.
[32] Granite. "What is Raman Spectroscopy?" https://www.edinst.com/fr/blog/what-is-raman-spectroscopy/
[33] 維基百科編者, "光學顯微鏡," in 維基百科,自由的百科全書, ed, 2022.
[34] A. Singh, M. Moun, M. Sharma, A. Barman, A. K. Kapoor, and R. Singh, "NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2," Applied Surface Science, vol. 538, pp. 148201, 2021.
[35] J. Lai et al., "Study on hydrophilicity of polymer surfaces improved by plasma treatment," Applied Surface Science, vol. 252, no. 10, pp. 3375-3379, 2006.
指導教授 陳昇暉 審核日期 2023-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明