博碩士論文 110322033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:100.26.179.41
姓名 張晉豪(Chin-Hao Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型試驗探討土壤再液化現象
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-24以後開放)
摘要(中) 土壤液化為台灣常見的災害,位於台灣台南市新化區於西元1946年、2010年、2016年分別發生規模6.1、6.4、6.6的地震,當地地質多為粉土質砂土(SM)與砂質粉土(ML),在同一處皆發生大規模液化,土壤反覆液化使得砂土層沉陷進而對建築物、管線等造成災害。
本研究進行一系列動態離心模型試驗,使用積層版試驗箱對不同砂土條件進行分析,模擬土層厚度18m之砂土,飽和水位至地表,震動共有3種強度,強度由小至大施打,同一強度震動會連續施打5次以模擬現地連續受震情形,透過不同震波與強度對加速度、孔隙水壓、沉陷量進行討論。
為進一步探討土層中的沉陷量,本研究透過線性可變差動變壓器(LVDT)之量測原理設計一套土層中沉陷計,此套設計主要包含沉陷板、外套管、滑輪組與釣魚線,透過拉線的方式以量測地表下指定位置的沉陷量,本研究於地表下6m與地表下12m放置土層中沉陷計欲將土壤平分為3層後續能夠對不同深度下的土壤進行分析與討論。
試驗結果顯示: 砂土受震沉陷後其體積應變會趨於定值,之後所施打的震動砂土體積應變皆小於0.5%;從三層土層的沉陷量觀察到土層越淺沉陷量則會越大,土層越深其量測之沉陷量越小。兩試驗皆在第一次的震動事件(Sine Wave) 沉陷趨勢皆為整體 15 個震動事件中最大的,鬆砂在一定強度震動在第一次的震動後會有最大的沉陷量,到達一定的相對密度後其體積應變不會有太大的改變。發生再液化現象時,造成液化所需的震動週期數小於初始液化時所需的震動週期數,即土壤抗液化能力降低。
摘要(英) Soil liquefaction is a common disaster in Taiwan, particularly in the XinHua District of Tainan City. Earthquakes of magnitudes 6.1, 6.4, and 6.6 occurred in the years 1946, 2010, and 2016, respectively. The local geology primarily consists of silty sand (SM) and sandy silt (ML). Large-scale reliquefaction events occurred at the same location during each of these seismic events, causing the subsidence of sandy layers and resulting in disasters affecting buildings, pipelines, and other infrastructure.
This study conducted a series of dynamic centrifuge model tests using a laminar shear box to analyze different sand conditions. The tests simulated saturated sandy soil with am 18-meters model ground, saturated water level up to the ground surface. Three levels of vibration intensity were applied sequentially, starting from the lowest and increasing in magnitude. For each intensity, vibrations were applied continuously five times to simulate the scenario of consecutive shaking. The study discussed the effects of different seismic waves and intensities on acceleration, pore water pressure, and settlement.
To further investigate settlement in the soil layers, this study designed a settlement gauge based on the measurement principle of a Linear Variable Differential Transformer (LVDT), call layers settlement guage. This design comprises a settlement plate, casing, pulley assembly, and fishing line. The settlement gauge measures the settlement at specified locations beneath the ground surface by pulling system. In this study, settlement gauges were placed at depths of 6 meters and 12 meters below the ground surface to divide the soil into three layers. The sensor enables subsequent analysis and discussion of the soil at different depths.
The test results indicate that the volume strain of the sandy soil tends to stabilize after seismic settlement, with subsequent vibrations inducing volume strains consistently below 0.5%. Observations of settlement in the three soil layers reveal that shallower layers experience greater settlement, while deeper layers exhibit smaller measured settlement. In both experiments, the settlement trend during the first vibration event S2-1(Sine Wave) is the highest among the 15 total vibration events. Loose sand experiences the maximum settlement after the initial vibration event at a certain intensity, and beyond a certain relative density, its volume strain does not undergo significant changes. In the occurrence of reliquefaction, the number of vibration cycles required for reliquefaction is less than that needed during the initial liquefaction. This implies a reduction in the soil′s anti-liquefaction capacity.
關鍵字(中) ★ 離心模型試驗
★ 土壤再液化
★ 砂土層沉陷
★ 土層中沉陷計
關鍵字(英) ★ Centrifuge test
★ Soil reliquefaction
★ Settlement of the sandy soil
★ Layers settlement gauges
論文目次 內容
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xix
1 第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文架構 2
2 第二章 文獻回顧 3
2.1 土壤液化 3
2.2 離心模型原理 3
2.2.1 離心模型之基本相似律 4
2.2.2 動態離心模型之相似律 4
2.3 黏滯液體 7
2.4 砂土受震後沉陷之相關文獻 8
2.5 土壤再液化相關文獻 13
3 第三章 實驗設備與研究方法 15
3.1 試驗方法 15
3.2 試驗土樣及基本物理性質 15
3.3 實驗儀器及相關設備 18
3.3.1 中央大學地工離心機 18
3.3.2 中央大學離心震動台及資料擷取系統 20
3.3.3 積層版試驗箱 25
3.3.4 各式感測器 27
3.3.5 土層中沉陷計 30
3.3.6 移動式霣降機 32
3.4 實驗準備步驟 32
3.4.1 橡皮膜製作 32
3.4.2 積層版試驗箱組裝 33
3.4.3 製備重模試體流程 35
3.4.4 土壤試體飽和 37
3.4.5 試驗前準備與震動試驗 39
4 第四章 研究結果與分析 41
4.1 實驗規劃與內容 41
4.2 物理量定義 46
4.3 升g過程相對密度與體積應變量 46
4.4 加速度歷時 48
4.4.1 加速度歷時反應 48
4.4.2 液化土層加速度歷時減震行為與突波訊號 80
4.4.3 土層深度影響 80
4.4.4 土層頻率特性 84
4.5 超額孔隙水壓歷時 91
4.5.1 數據濾波與處理 91
4.5.2 超額孔隙水壓歷時反應 91
4.5.3 超額孔隙水壓比 107
4.5.4 再液化現象 123
4.6 地表與土中沉陷量 125
4.6.1 沉陷量歷時反應 125
4.7 沉陷量與加速度、超額孔隙水壓比震動期間歷時 160
4.8 沉陷量與超額孔隙水壓比全程歷時 191
4.9 各土層相對密度、體積應變、剪應變關係 201
4.9.1 分層討論 201
4.9.2 分層相對密度討論 202
4.9.3 分層體積應變討論 203
4.9.4 分層剪應變討論 205
4.9.5 分層剪應變與體積應變之間關係 206
4.9.6 綜合因素比較 209
4.10 整層相對密度、體積應變、剪應變關係 212
4.11 沉陷板沉陷數據跳動探討 216
5 第五章 結論與建議 219
5.1 結論 219
5.2 建議 220
6 參考文獻 221
7 附錄 224
7.1 加速度歷時反應 224
7.2 土層深度影響 224
7.3 沉陷量歷時反應 224
參考文獻 [1] Adamidis, O., Madabhushi, G.S.P., “Use of viscous pore fluids in dynamic centrifuge modeling,” Intermational Journal of Physical Modelling in Geotechnics, Vol. 15, No. 3, pp. 141-149 (2016)
[2] Bwambale, B., and Andrus, R. D., ‘‘State of the art in the assessment of aging effects on soil liquefaction,’’ Soil Dynamics and Earthquake Engineering, Vol. 125, (2019)
[3] Fretti, C., Presti, D. L., & Pedroni, S. “A pluvial deposition method to reconstitute well-graded sand specimens,” Geotechnical testing journal, Vol. 18, No. 2, pp. 292-298 (1995)
[4] Ha, I. S., Olson, S. M., Seo, M. W., and Kim, M. M., “Evaluation of reliquefaction resistance using shaking table tests,” Soil dynamics and earthquake engineering, Vol.31, No. 4, pp. 682-691. (2011)
[5] Huang, F. K., Tsai, C. C., Ge, L., Lu, C. W., and Chi, C. C., “Strength variations due to re-liquefaction—indication from cyclic tests on undisturbed and remold samples of a liquefaction-recurring site,” Bulletin of Engineering Geology and the Environment, Vol. 81, No. 117.(2022)
[6] Kiyota, T., Suguru Y., and Yasuyo H., “Repeated liquefaction observed during the 2010-2011 Canterbury earthquakes,” Bulletin of Earthquake Resistant Structure Research Center, Institute of Industrial Science, University of Tokyo, Vol. 45. (2012)
[7] Mitchell, J. K., and Solymar, Z. V., “Time-Dependent Strength Gain in Freshly Deposited or Densified Sand,” Joirnal of Geotechnical Engineering, Vol. 110, No. 11, pp.1559-1576 (1984)
[8] Nagase, H. and K. Ishihara., “Liquefaction-induced compaction and settlement of sand during earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76 (1988)
[9] Oda, M., Kawamoto, K., Suzuki, K., Fujimori, H., and Sato, M., “Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loadin” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 5, pp. 416-423 (2001).
[10] Rahimi, S., Wood, C. M., Wotherspoon, L. M., and Green, R. A., “Efficacy of aging correction for liquefaction assessment of case histories recorded during the 2010 Darfield and 2011 Christchurch Earthquakes in New Zealand” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 146, No. 8, (2020)
[11] Schmertmann, J. H., “The mechanical aging of soils, ” Journal of Geotechnical Engineering, Vol. 117, No. 9, pp. 1288-1330 (1991)
[12] Seed, H. B. and M. L. Silver., “Settlement of dry sands during earthquakes,” Journal of the Soil Mechanics and Foundations Division, Vol. 98, No. 4, pp. 381-397 (1972)
[13] Seed, H.B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, 105, 201-255 (1979)
[14] Silver, M. L. and H. B. Seed., “Volume changes in sands during cyclic loading,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 9, pp. 1171-1182 (1971)
[15] Tokimatsu, K. and H. B. Seed., “Evaluation of settlements in sands due to earthquake shaking,” Journal of geotechnical engineering, Vol. 113, No. 8, pp. 861-878 (1987)
[16] Towhata, I., Goto, S., Taguchi, Y., Hayashida, T., Shintaku, Y., and Hamada, Y. “On ageing of liquefaction resistance of sand,” Japanese Geotechnical Society Special Publication, Vol. 2, No. 21, pp. 800-805 (2016)
[17] Wakamatsu, K., “Recurrence of liquefaction at the same site induced by the 2011 Great East Japan Earthquake compared with previous earthquakes,” Proc. of the 15th world conf. on earthquake engineering. (2012)
[18] Youd, T. L., and Hoose, S. N., ‘‘Liquefaction susceptibility and geologic setting,’’ Proc., 6th World Conf. on Earthquake Engineering, Vol. 6, pp. 65-76 (1977)
[19] Youd, T. L., and Perkins, D. M., ‘‘Mapping of liquefactioninduced ground failure potential,’’ Journal of the Geotechnical Engineering Division, Vol. 104, No. 4, pp. 433–446 (1978)
[20] 黃富國、王淑娟、周秉宏、劭屏華、侯進雄、盧詩丁、邱禎龍、謝有忠、蘇泰維、王聖宗,「SCPTu土壤液化危害度分析−以台南新化再液化場址為例」,大地工程技師公會期刊,第二十七期(2023)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2024-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明