博碩士論文 110322039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.148.144.214
姓名 幸伃晴(Yu-Qing Xing)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考慮不同時間跨度下的台北土層液化機率
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 以離心模型試驗探討凹形邊坡之穩定性★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例
★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析★ 評估土壤液化最佳地動強度量值
★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法★ 台灣本地土壤液化數據庫之應用
★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 台灣位於兩個活動板塊的交界,東南方為菲律賓海板塊,西北方為歐亞大陸板塊,因此地震頻繁,而地震造成許多建築物破損以及生命財產的損失,同時也引發土壤液化,使得國人對於土壤液化意識逐漸提高。而為了要評估液化危害的程度,Iwasaki et al. [1]提出液化潛能指數(LPI)的三種液化危害等級,但因為液化危害的分類無法量化,且其他學者提出的液化潛能危害度有不同的評分,所以也沒有一個標準的值。因此本研究主旨將土壤液化之機率由分類變成定量的標準,並選取台北之鑽孔資料,以及所要進行研究之斷層為山腳斷層,並在分析過程中加入了強地動預估式(GMPE),將推估出的地震動大小代入研究區域內,並在指定之年限裡面去計算出土壤液化之機率。
本研究所要探討的地點為台北地區,斷層為山腳斷層,而我們計算方法是利用一種基於時間變化下的土壤液化機率之定值法。該方法是參考了Liao et al. [2]所提出了液化機率(PL),並利用台灣的509個液化案例,開發出一個新適合用於台灣本地的液化機率模型,且在計算時我們不考慮變量之不確定性來進行時間相關的分析。最後我們使用此方法,對台北地區進行了案例研究,並計算在未來25、50、100、...、1000年下地震發生之土壤液化機率。
本研究之目的為基於時間下的土壤液化機率評估,計算出的液化機率為一個實際的值,並不是以一個分類的結果來呈現,因為分類結果較不能確定液化的機率,且也不能確實表明此地區真實液化的情況。由於風險評估的定義為機率乘以發生事件的後果,因此所計算出來的土壤液化機率即表示在未來可進行更進一步之風險評估。
摘要(英) Taiwan is located at the boundary of the Philippine Sea Plate and the Eurasian Plate, earthquakes caused many buildings to be damaged and loss of life and property. They also trigger soil liquefaction, leading to an increasing awareness among the public about this phenomenon. To evaluate liquefaction hazard, Iwasaki et al. [1] proposed three levels of liquefaction hazard based on the Liquefaction Potential Index (LPI). However, the classification of liquefaction hazard cannot be quantified and other scholars have proposed different ratings for liquefaction potential hazard, there is no standard value for it. Therefore, the study is to transform the probability of soil liquefaction from a classification to a quantitative standard and use the data from the Taipei area and the Sanchiao fault for analysis. The analysis will also incorporate Ground Motion Prediction Equations (GMPE) to estimate the size of ground motion and calculate the probability of soil liquefaction within the specified timeframe.
The study is used for calculating soil liquefaction probability on a time-based deterministic method, based on the liquefaction probability (PL) proposed by Liao et al. [2], and used 509 liquefaction cases in Taiwan to develop a new liquefaction probability model suitable for local conditions, and we did not consider the uncertainty of variables to conduct time-related analysis. Finally, we used this method to conduct a case study in Taipei and calculated the probability of soil liquefaction in the next 25, 50, 100, ..., and 1000 years after an earthquake.
The study is to evaluate soil liquefaction probability based on time. The calculated liquefaction probability is an actual value, which is different from classification results that cannot determine the probability of liquefaction. Risk assessment is defined as the probability multiplied by the consequences of an event, the calculated probability of soil liquefaction means that further risk assessment can be carried out in the future.
關鍵字(中) ★ 土壤液化
★ 台灣台北地區
★ 羅吉斯回歸模型
★ 定值法
關鍵字(英) ★ Soil liquefaction
★ Taipei area
★ Logistic regression model
★ Deterministic method
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究方法 2
1-4 論文架構 2
第二章 文獻回顧 3
2-1 土壤液化 3
2-1-1 液化之定義 3
2-1-2 液化造成之破壞 3
2-2 土壤液化潛能評估 4
2-2-1 簡易法評估土壤液化潛能 4
2-2-2 正規化反覆剪應力比(CSRN) 5
2-2-3 評估土壤抗液化強度之新標準化參數:{{(N}_1)}_{60} 5
2-2-4 液化潛能指數(Liquefaction Potential Index, LPI) 6
2-3 數據資料 6
2-3-1 研究區域 6
2-3-2 山腳斷層地質構造資料 7
2-3-3 地震矩規模(Moment magnitude, M_W) 7
2-4 地動參數之經驗公式 8
2-4-1 地震矩規模經驗式 8
2-4-2 強地動預估式(Ground Motion Prediction Equation, GMPE) 8
2-5 地震發生模式 9
第三章 研究方法 16
3-1 數據選取 16
3-2 土壤液化機率 16
3-3 場址之液化機率 17
3-4 地震發生時之液化機率 18
3-5 定值法分析流程 19
3-5-1 計算平均項之地震矩規模(M_W)以及最大地動加速度(PGA) 19
3-5-2 計算平均項之正規化反覆剪應力比(CSRN) 19
3-5-3 計算平均項之{(N_1)}_{60} 20
3-5-4 計算平均項之再現週期 20
第四章 研究結果 26
4-1 定值法分析結果 26
4-2 假設不同地震矩規模之液化機率結果 27
4-2-1 未來25年內地震發生土壤液化機率分析結果 27
4-2-2 未來50年內地震發生土壤液化機率分析結果 27
4-2-3 未來100年內地震發生土壤液化機率分析結果 27
4-2-4 結論 28
4-3 土壤液化機率(P_L)參數之相關性 28
第五章 結論與建議 54
5-1 結論 54
5-2 建議 56
參考文獻 57
參考文獻 [1] Iwasaki T, Arakawa T, Tokida K. Simplified procedures for assessing soil liquefaction during earthquakes. Soil Dynamics and Earthquake Engineering 1982;925-939.
[2] Liao SSC, Veneziano D, Whitman RV. Regression models for evaluating liquefaction probability. Journal of Geotechnical Engineering, ASCE 1988;114(4):389-411.
[3] Lee DH, Ku CS, Yuan H. A study of the liquefaction risk potential at Yuanlin, Taiwan. Engineering Geology 2003;71(1-2):97-117.
[4] Hwang JH, Khoshnevisan S, Juang CH, Lu CC. Soil liquefaction potential evaluation–An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology 2021;280:105926.
[5] 陳正興與陳家漢,土壤引致的土壤液化與側潰現象,科學發展,第四百九十八期,第12-17頁,(2014)。
[6] Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder Jr LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson III WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe II KH. Liquefaction resistance of soils: summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001;127(10):817-833.
[7] 彭振聲、曾俊傑、蕭秋安、廖繼仁與趙慶宇, HBF、NJRA、SEED、T&Y等四種土壤液化分析方法應用於臺北市之比較及探討,中國土木水利工程學刊,第四十五卷,第四期,第52-58頁,(2018)。
[8] Tokimatsu K, Yoshimi Y. Empirical correlation of soil liquefaction based on SPT-N value and fines content. Soils and Foundations 1983;23(4):56-74.
[9] JRA (Japan Road Association). Road Bridge Specifications: Part V Series of Earthquake-Proof Design. 1996. (in Japanese).
[10] Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE 1985;111(12):1425–1445.
[11] 黃俊鴻與陳正興,土壤液化評估規範之回顧與前瞻,地工技術,第七十期,第43-54頁,(1998)。
[12] 黃俊鴻、楊志文與陳正興,本土化液化評估方法之建議-雙曲線液化強度曲線,地工技術,第一百零三期,第53-64頁,(2005)。
[13] 賴聖耀,以標準貫入試驗值建立土壤液化潛能判別模式,中國土木水利工程學刊,第二卷,第七十期,第301-311頁,(1990)。
[14] Iwasaki T, Tatsuoka K, Yasuda ST. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In Proceedings of the Second International Conference on Microzonation for Safer Construction–Research and Application, Tokyo, 1978;2:885-896.
[15] 洪奕星、彭慧蘭、劉桓吉、賴慈華、黃智昭與費立沅,台北盆地沉積相和沉積環境的分布,西太平洋地質科學,第六卷,第59-86頁,(2006)。
[16] Chen CT, Lee JC, Chan YC, Lu CY, Teng LSY. Elucidating the geometry of the active Shanchiao fault in the Taipei metropolis, northern Taiwan, and the reactivation relationship with preexisting orogen structures. Tectonics 2014;33(12):2400-2418.
[17] Cheng CT, Chiou SJ, Lee CT, Tsai YB. Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering 2007;2(1):19-28.
[18] Cheng CT, Lee CT, Lin PS, Lin BS, Tsai YB, Chiou SJ. Probabilistic earthquake hazard in metropolitan Taipei and its surrounding regions. Terrestrial, Atmospheric and Oceanic Sciences 2010;21(3):429-446.
[19] Hank TC, Kanamori H. A moment magnitude scale. Journal of Geophysical Research: Solid Earth 1979;84(B5):2348-2350.
[20] Anderson JG, Wesnousky SG, Stirling ME. Earthquake size as a function of fault slip rate. Bulletin of Seismological Society of America 1996;86(3):683-690.
[21] Wang JP, Xu Y, Wu YM. Earthquake probability in Taipei based on non-local model with limited local observation: maximum likelihood estimation. Soil Dynamics and Earthquake Engineering 2017;99:150-156.
[22] Youngs RR, Coppersmith KJ. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America 1985;75(4):939-964.
[23] 黃富國,SPT液化機率及損害評估模式之建立與應用,中國土木水利工程學刊,第二十卷,第二期,第155-174頁,(2008)。
[24] Mason SJ, Hill R, Mönch RL, Rose O, Jefferson T, Fowler JW. Introduction to Monte Carlo simulation. In Proceedings of the 2008 Winter Simulation Conference, Miami, 2008;91-100.
[25] Park HA. An introduction to Logistic regression: from basic concepts to interpretation with particular attention to nursing domain. Journal of Korean Academy of Nursing 2013;43(2):154-164.
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2023-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明