博碩士論文 110322046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.14.76.200
姓名 李知庭(Chih-Ting Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以SPT-N結合Vs-N之經驗模型進行土壤液化評估
(Soil liquefaction assessment using SPT-N values coupled with Vs-N empirical models)
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 以離心模型試驗探討凹形邊坡之穩定性★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例
★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析★ 評估土壤液化最佳地動強度量值
★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法★ 考慮不同時間跨度下的台北土層液化機率
★ 台灣本地土壤液化數據庫之應用★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究根據強震測站場址工程地質資料庫(Engineering Geological Database for TSMIP, EGDT)中土層原始資料進行參考,進而設定經驗模型的地質條件,主要著重在砂土層的液化評估,並且參考了Andrus and Stokoe [1]在繪製Vs及CRR曲線之四個限制:(1)地下水位面設在0.5 - 6公尺。(2)剪力波速須在100-200 m/s之間。(3)全新世未膠結土壤。和(4)所量測土層之平均深度為10 m。加上大、中、小不同地震與不同細粒料含量的情況下分析17組經驗公式中的數據庫,共1683個數據點。

基於三種土壤液化評估程序 [1-3],以及17組SPT-N (標準貫入試驗)與剪力波速(Vs)的關係 [12-28],計算求得各個安全係數,有效的觀察出其中差異,找出使用SPT-N或是Vs哪個在工程安全上比較保守的建議,最後開發出基於SPT與Vs的安全係數之比值的液化評估模型。

研究結果顯示R的機率分布之平均值為1.76和標準差為0.59,利用Kolmogorov-Smirnov (K-S)檢定求出此為對數常態分布,則此機率模型可以幫助我們透過簡單的確定性計算進而容易地評估液化機率,且根據105次驗證測試的結果,該模型在統計學上是穩健的。
摘要(英) The study is based on an actual soil profile from the Engineering Geological Database for TSMIP (EGDT), and then sets the geological conditions of the empirical model, mainly focusing on the soil liquefaction assessment of the sandy soil layer, referring to Andrus and Stokoe [1] made the following recommendations, or constraints: (1) groundwater table is situated at 0.5-6 m, (2) the soil’s Vs is within 100-200 m/s, (3) uncemented soils of Holocene (< 10,000 years), and (4) the middle point of the target (sandy) layer is no deeper than 10 m. In addition, the database in 17 N-Vs relationships was analyzed under the conditions of different earthquakes and different fines content, with a total of 1683 data points.

Mainly based on three soil liquefaction assessment procedures [1-3], 17 empirical relationships between shear wave velocity and SPT-N values [12-28], calculate each factor of safety, effectively observe the difference, and find out which is more conservative in engineering. Next, we developed the liquefaction assessment model which is based on the ratio of SPT- to Vs-based liquefaction factors of safety.

It shows that the probability distribution of R can be well modeled by the lognormal distribution with mean value = 1.76 and standard deviation (SD) = 0.59. This probability model can help us estimate soil liquefaction probability more easily, via an unsophisticated, deterministic calculation. Last but not least, the model is statistically robust according to the results of 105 verification tests.
關鍵字(中) ★ 液化機率
★ 安全係數
★ SPT
★ Vs
關鍵字(英) ★ liquefaction probability
★ factors of safety
★ SPT
★ Vs
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 土壤液化 4
2.1.1 液化之說明 4
2.1.2 液化造成的破壞 4
2.2 標準貫入試驗 5
2.3 剪力波速 6
2.3.1 剪力波速之應用 6
2.3.2 現地剪力波速之量測方法 7
2.4 土壤液化評估法 7
2.4.1 NCEER之液化評估法 8
2.4.2 Boulanger及Idriss之液化評估法 11
2.4.3 Andrus及Stokoe之液化評估法 13
2.5 SPT-N及Vs相關性 15
2.5.1 過去學者所提出的經驗公式 16
2.6 Kolmogorov-Smirnov (K-S)檢定 16
第三章 研究方法 29
3.1 設定土層參數 30
3.1.1 數據模型的建立 30
3.2 以K-S檢定對R做適合度分析 31
3.3 95%信心區間之預測模型 31
3.4 模型驗證 32
3.4.1 強震測站場址工程地質資料庫 32
3.4.2 GetData Graph Digitizers 2.25 33
第四章 研究結果 44
4.1 R值分析結果 44
4.2 105次模型驗證 44
4.3 應用R機率分布 46
第五章 結論與建議 131
5.1 結論 131
5.2 建議 132
參考文獻 133
參考文獻 [1] Andrus RD, Stokoe KH. Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2000;126(11):1015-1025.
[2] Boulanger RW, Idriss IM. CPT and SPT Based Liquefaction Triggering Procedures. Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering. University of California, Davis, CA, 2014.
[3] Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder Jr LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson III WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe II KH. Liquefaction resistance of soils: summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001;127(10):817-833.
[4] Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE 1971;97(9):1249-1273.
[5] Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluation. Journal of Geotechnical Engineering, ASCE 1985;111(12):1425-1445.
[6] JRA (Japan Road Association). Road Bridge Specifications: Part V Series of Earthquake-Proof Design. 1996. (in Japanese).
[7] AIJ (Architectural Institute of Japan). Recommendations for the Design of Building Foundations. 2001. (in Japanese).
[8] Hwang JH, Khoshnevisan S, Juang CH, Lu CC. Soil liquefaction potential evaluation – An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology 2021;280:105926.
[9] Robertson PK, Woeller DJ, Finn WDL. Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal 1992;29(4): 686-695.
[10] Tokimatsu K, Uchida A. Correlation between liquefaction resistance and shear wave velocity. Soils and Foundations 1990;30(2):33-42.
[11] Kayen RE, Mitchell JK, Seed RB, Lodge A, Nishio S, Coutinho RQ. Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data. In Proceedings of the 4th Japan-U.S. Workshop on Earthquake-Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, New York, 1992;19:177-204.
[12] Ohta T, Hara A, Niwa M, Sakano T. Elastic shear moduli as estimated from N-value. In Proceedings of the 7th Annual Convention of Japan Society of Soil Mechanics and Foundation Engineering, Tokyo, 1972;265-268.
[13] Ohsaki Y, Iwasaki R. On dynamic shear module and Poisson’s ratio of soil deposits. Soils and Foundations 1973;13(4):61-73.
[14] Imai T. P- and S-wave velocities of the ground in Japan. In Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 1977;2:127-132.
[15] JRA (Japan Road Association). Specification and Interpretation of Bridge, Design for Highway-Part V: Resilient Design. 1980. (in Japanese).
[16] Seed HB, Idriss IM. Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention (MO) 1981;481-544.
[17] Sykora DW, Stokoe KH. Correlations of in-situ measurements in sands of shear wave velocity. Soil Dynamics and Earthquake Engineering 1983;20:125-136.
[18] Lee HH. Regression models of shear wave velocities in Taipei basin. Journal of the Chinese Institute of Engineers 1990;13(5):519-53.
[19] Kalteziotis N, Sabatakakis N, Vassiliou J. Evaluation of dynamic characteristics of Greek soil formations. Second Hellenic Conference on Geotechnical Engineering, Thessaloniki, 1992;2:239-246.
[20] Raptakis DG, Anastasiadis SAJ, Pitilakis KD, Lontzetidis KS. Shear wave velocities and damping of Greek natural soils. In Proceedings of the 10th European Conference Earthquake Engineering, Vienna, 1995;1:477-482.
[21] Jafari MK, Shafiee A, Razmkhah A. Dynamic properties of fine grained soils in south of Tehran. Soil Dynamics and Earthquake Engineering 2002;4:25-35.
[22] Hasancebi N, Ulusay R. Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bulletin Engineering Geology and the Environment 2007;66:203-213.
[23] Lee CT, Tsai BR. Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 2008;19(6):671-682.
[24] Hanumantharao C, Ramana GV. Dynamic soil properties for microzonation of Delhi, India. Journal of Earth System Science 2008;117(S2):719-730.
[25] Dikmen U. Statistical correlations of shear wave velocity and penetration resistance for soils. Journal of Geophysics and Engineering 2009;6:61-72.
[26] Uma Maheswari R, Boominathan A, Dodagoudar GR. Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils. Geotechnical and Geological Engineering 2010;28(2):119-137.
[27] Anbazhagan P, Parihar A, Rashmi HN. Review of correlations between SPT-N and shear modulus: A new correlation applicable to any region. Soil Dynamics and Earthquake Engineering 2012;36:52-69.
[28] 周辰諭,基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法,國立中央大學,碩士論文,桃園市,(2022)。
[29] 陳正興與陳家漢,地震引致的土壤液化與側潰現象,科學發展,第四百九十八期,第12-17頁,(2014)。
[30] 三元,標準貫入試驗的問題與轉機,中興工程,第六十卷,第81-94頁,(1998)。
[31] 歐陽,解說土壤力學,初版,文笙書局,臺北市,(2014)。
[32] 林志峯、曾俊傑、蕭秋安、周坤賢、胡志昕與王鶴翔,多種地球物理探測法於基隆河河岸土層剪力波波速調查,土木水利,第四十七卷,第71-78頁,(2020)。
[33] 張健邦,統計學,初版,三民書局,臺北市,(2001)。
[34] Ishihara K. Stability of natural deposits during earthquakes. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, CA, USA, 1985;1:321-376.
[35] 黃安斌,土壤力學與基礎工程,二版,高立圖書,新北市,(2016)。
[36] Bolt BA. Earthquakes: A Primer. San Francisco: W.H. Freeman and Company, 1978.
[37] 李咸亨與吳志明,下井探測法量測剪力波速之影響因,中國土木水利工程學刊,第三卷,第一期,第15-28頁,(1991)。
[38] Ang AH, Tang W. Probability Concepts in Engineering Planning: Emphasis on Applications to Civil and Environmental Engineering. New Jersey: John Wiley and Sons, Inc., 2007.
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2023-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明