博碩士論文 110322049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.118.10.141
姓名 梁喬茵(CHIAO-YIN LIANG)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究
(Effect of aggregate-binder ratio and fiber type on the engineering properties of 3D printing concrete)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響★ 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究
★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例★ 溫度對複合添加凝結型及硬化型加速劑的預拌高早強水泥漿體及砂漿之工程性質影響研究
★ 永續材料及纖維應用於3D列印混凝土之工程性質探討★ 硫鋁酸鈣水泥複合膠結材料之工程性質及抗硫酸鹽能力研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-1以後開放)
摘要(中) 3D 列印混凝土是利用增材製造技術逐堆疊成複雜的混凝土結構,對於材料與列印 工藝的要求極高。本研究主要以調整化學外加劑、砂膠比及纖維參數進行測試,分別透 過工作性、可列印性、力學行為及體積穩定性等方面加以探討,評估不同配比設計對 3D 列印混凝土的工程性質之影響。
本研究分為「化學外加劑對 3D 列印水泥基體工程性質之影響」、「砂膠比對 3D 列 印混凝土之工程性質之影響」及「纖維種類對 3D 列印纖維混凝土工程性質之影響」三 個階段進行探討,第一階段主要評估不同類型或型號之化學外加劑對 3D 列印水泥基體 之影響,並根據其測試結果提出適用於 3D 列印混凝土之化學外加劑及使用比例;第二 階段探討使用不同砂膠比(0.5 ~ 1.5),對 3D 列印混凝土之工作性與可列印性之關係,並 探討砂膠比對 3D 列印混凝土硬固性質之影響;第三階段則透過纖維的類型(聚甲醛、聚 丙烯、碳及玄武岩纖維)、含量(0.5 % ~ 1.5 %)及長度(6 ~ 12 mm)變化對 3D 列印纖維混 凝土的工程性質影響,評估不同纖維應用於 3D 列印纖維混凝土之匹配性及適用性。
結果顯示,黏度改質劑可對 3D 列印混凝土之觸變性提供顯著改善,並以固含量與 減水率分別為 17.5 與 25 % 之複合型聚羧酸減水劑(SPD)搭配複合型黏度改質劑(CVMA) 較具適用性,且 CVMA 之添加量為膠結材料重量比之 0.5 % 時效果最佳。在 3D 列印混 凝土之新拌階段方面,砂膠比的變化將影響 3D 列印混凝土之可列印範圍,流度與保型 率需分別處於 50 % ~ 60 % 及 86.5 % ~ 91.5 % 範圍內時方可滿足其可列印性。在硬 固階段可發現,相較於傳統灌漿,以 3D 列印方式製作之混凝土試體存在強度損失並有 各向異性存在,其中,各面抗壓強度之關係為 X 面 > Y 面 ≈ Z 面,而抗彎強度之關 係則為 Y 面 ≈ Z 面 < X 面。在與砂膠比之關係方面,3D 列印混凝土之砂膠比在提升 至 1.5 時將對力學性質將造成負面影響,但其乾燥收縮量則隨砂膠比的提升而出現顯著 改善。同時發現,3D 列印混凝土會因纖維之性質不同而在強度發展趨勢上存在相異。其 中,碳纖維可有效改善強度損失,且強度表現隨摻量增加而提升,並可增加彈性階段之 位移量;聚丙烯纖維之強度表現僅次於碳纖維,且其同樣隨摻量增加而提升,並可有效
i
提升混凝土在開裂後之韌性表現;聚甲醛纖維與玄武岩纖維則較不利於 3D 列印混凝土 之強度發展,其中,玄武岩纖維之強度表現則呈現先上升後下降之趨勢,且在列印過程 中極易在噴頭處堆積而造成擠出困難,而聚甲醛纖維造成之強度損失隨摻量增加而顯著, 但其在混凝土之體積穩定性方面可起正向作用。此外,不論纖維種類,增加纖維長度皆 可能造成 3D 列印混凝土之強度削減,並導致乾燥收縮提升。
摘要(英) 3D printing concrete is a complex concrete structure that is stacked one by one using additive manufacturing technology, which has extremely high requirements for materials and printing technology. This study mainly tests the adjustment of chemical admixtures, cement ratio and fiber parameters, discusses the workability, printability, mechanical behavior and volume stability respectively, and evaluates the effect of different ratio designs on 3D printing concrete. The impact of the nature of the project.
This research is divided into "Effects of chemical admixtures on the engineering properties of 3D printing cement matrix", "Effects of sand-binder ratio on the engineering properties of 3D printing concrete" and "Effects of fiber types on the engineering properties of 3D printing fiber-reinforced concrete" The discussion will be carried out in three stages. The first stage mainly evaluates the impact of different types or types of chemical admixtures on the 3D printing cement matrix, and proposes the chemical admixtures and usage ratios suitable for 3D printing concrete based on the test results; the second stage in the first stage, different sand binder glue ratios (0.5 ~ 1.5) were used to propose the relationship between the workability and printability of 3D printing concrete, and to explore the impact of the sand binder ratio on the hardend properties of 3D printing concrete; the third stage was to use the effect of fiber type (polyoxymethylene, polypropylene, carbon and basalt fiber), content (0.5 % ~ 1.5 %) and length (6 ~ 12 mm) on the engineering properties of 3D printing fiber concrete, to evaluate the application of different fibers in compatibility and applicability of 3D printing fiber concrete.
The results show that the viscosity modifier can significantly improve the thixotropy of 3D printing concrete, and the composite polycarboxylate superplasticizer (SPD) with a solid content of 17.5% and a water reducing rate of 25% is combined with a composite
viscosity modifier Additive (CVMA) is more applicable, and the effect is best when the
iii
amount of CVMA added is 0.5% of the weight ratio of the cementitious material. In the fresh mixing stage of 3D printing concrete, the change of sand binder ratio will affect the printable range of 3D printing concrete, and the fluidity and shape retention rate should be in the range of 50% ~ 60% and 86.5% ~ 91.5% respectively only then can its printability be satisfied. In the hardening stage, it can be found that compared with traditional casting, the concrete specimen produced by 3D printing has strength loss and anisotropy. Among them, the relationship between the compressive strength of each surface is X-plane > Y- plane ≈ Z surface, and the relationship of flexural strength is Y surface ≈ Z surface < X surface. In terms of the relationship with the sand-binder ratio, when the sand-binder ratio of 3D printing concrete is increased to 1.5, the mechanical properties will be negatively affected, but its drying shrinkage will be significantly improved with the increase of the sand-binder ratio. At the same time, it was found that 3D printing concrete will have different strength development trends due to different properties of fibers. Among them, carbon fiber can effectively improve the strength loss, and the strength performance increases with the increase of the content, and can increase the displacement of the elastic stage; the strength performance of the polypropylene fiber is second only to the carbon fiber, and it also increases with the increase of the content. It can effectively improve the toughness of concrete after cracking; POM fiber and basalt fiber are not conducive to the strength development of 3D printing concrete. Among them, the strength performance of basalt fiber shows a trend of rising first and then falling, and during the printing process it is very easy to accumulate at the nozzle and cause extrusion difficulties, and the strength loss caused by polyoxymethylene fibers increases significantly with the increase of the content, but it can play a positive role in the volume stability of concrete. In addition, regardless of the fiber type, increasing the fiber length may reduce the strength of 3D printing concrete and lead to increased drying shrinkage.
關鍵字(中) ★ 3D 列印混凝土
★ 砂膠比
★ 纖維
★ 可列印性
★ 各向異性
關鍵字(英) ★ 3D Printing Concrete
★ Mortar Ratio
★ Fibers
★ Printability
★ Anisotropy
論文目次 摘要 ..........................................................................................................................................................................i ABSTRACT ........................................................................................................................................................ iii 致謝 ....................................................................................................................................................................... vi 目錄 ......................................................................................................................................................................vii
圖目錄 表目錄 第一章
1.1 1.2 1.3
第二章 2.1
2.2
2.3
2.4
2.5
................................................................................................................................................................... x
................................................................................................................................................................xvi
緒論........................................................................................................................................................1 研究背景與動機 .............................................................................................................................1
研究目的............................................................................................................................................1 研究內容............................................................................................................................................2
文獻回顧...............................................................................................................................................5 3D 列印...............................................................................................................................................5
3D 列印混凝土技術.......................................................................................................................5
2.2.1 3D列印混凝土技術的起源.............................................................................................5
2.2.2 3D 列印混凝土技術與傳統施工方法差別 ................................................................6
2.2.3 3D列印混凝土技術的應用.............................................................................................7
3D 列印混凝土之工藝..................................................................................................................9 2.3.1 列印儀器................................................................................................................................9 2.3.2 擠出設備.............................................................................................................................10 3D 列印混凝土新拌可列印性要求....................................................................................... 11 2.4.1 可泵性..................................................................................................................................12 2.4.2 可擠出性.............................................................................................................................13 2.4.3 可建造性.............................................................................................................................14 3D 列印混凝土材料之設計要求............................................................................................ 16 2.5.1 粒料作用與要求...............................................................................................................17
2.5.2 礦物摻料.............................................................................................................................17
vii
2.6
2.7
第三章 3.1
3.2
3.3 3.4
第四章 4.1
4.2
4.3
2.5.3 化學摻料.............................................................................................................................19 2.5.4 用於3D列印混凝土之配比設計...............................................................................20 3D 列印混凝土硬固性質 .......................................................................................................... 21 2.6.1 各向異性之影響...............................................................................................................21 2.6.2 層間界面之影響...............................................................................................................22 2.6.3 耐久性..................................................................................................................................23 纖維在混凝土中的特性 ............................................................................................................ 25
2.7.1 纖維混凝土之工作性.....................................................................................................25
2.7.2 纖維混凝土之破壞機理.................................................................................................26
2.7.3 纖維對 3D 列印混凝土的影響 .................................................................................... 27
研究規劃............................................................................................................................................ 29 研究流程......................................................................................................................................... 29
3.1.1 第一階段 化學外加劑對3D列印水泥基體工程性質之影響........................30 3.1.2 第二階段 砂膠比對3D列印混凝土工程性質之影響......................................32 3.1.3 第三階段 3D列印纖維混凝土之硬固性質影響.................................................34 試驗材料及設備 .......................................................................................................................... 36 3.2.1 試驗材料.............................................................................................................................36 3.2.2 試驗設備.............................................................................................................................40 試驗配比設計與實驗項目 ....................................................................................................... 43 試驗方法......................................................................................................................................... 49 3.4.1 新拌試驗方法....................................................................................................................49 3.4.2 硬固性質試驗....................................................................................................................51
研究成果與分析.............................................................................................................................56 儀器參數......................................................................................................................................... 56
化學外加劑對 3D 列印水泥基體工程性質之影響......................................................... 57 4.2.1 不同SP對3D列印水泥基體坍流度之影響.........................................................58 4.2.2 不同VMA與SP組合對3D列印水泥基體工程性質之影響.........................61 4.2.3 小結-不同SP與CVMA在3D列印水泥基體中之適用性及使用量...........69
砂膠比對 3D 列印混凝土工程性質之影響 ....................................................................... 73
viii

4.3.1 新拌性質試驗....................................................................................................................73 4.3.2 硬固性質試驗....................................................................................................................96 4.3.3 小結-3D列印混凝土與砂膠比之關係..................................................................118
4.4 纖維種類對 3D 列印混凝土之工程性質之影響 ............................................................... 121
4.4.1 3D列印聚甲醛(POM)纖維混凝土...........................................................................121
4.4.2 3D 列印聚丙烯(PP)纖維混凝土 ................................................................................ 132
4.4.3 3D列印碳(C)纖維混凝土............................................................................................147
4.4.4 3D列印玄武岩(B)維混凝土.......................................................................................162
4.4.5 纖維混凝土之韌性試驗...............................................................................................176
4.4.6 微觀分析...........................................................................................................................177
4.4.7 小結-3D 列印混凝土之纖維匹配性探討 ........................................................... 180
4.5 綜合討論 .......................................................................................................................................... 184
第五章 結論與建議.....................................................................................................................................188 5.1 結論 ................................................................................................................................................ 188
5.2 後續研究建議 ............................................................................................................................. 190
參考文獻........................................................................................................................................................... 191 圖附錄 ............................................................................................................................................................... 201
參考文獻 [1]. Essmeister,J.,Altun,A.A.,Staudacher,M.,Lube,T.,Schwentenwein,M.,andKonegger, T. (2022). Stereolithography-based additive manufacturing of polymer-derived SiOC/SiC ceramic composites. Journal of the European Ceramic Society, 42(13), 5343-5354.
[2]. Buswell, R. A., Soar, R. C., Gibb, A. G., andThorpe, A. (2007). Freeform construction: mega-scale rapid manufacturing for construction. Automation in construction, 16(2), 224-231.
[3]. Cano-Vicent,A.,Tambuwala,M.M.,Hassan,S.S.,Barh,D.,Aljabali,A.A.,Birkett,M., and Serrano-Aroca, Á. (2021). Fused deposition modelling: Current status, methodology, applications and future prospects. Additive Manufacturing, 47, 102378.
[4]. Pegna, J. (1997). Exploratory investigation of solid freeform construction. Automation in construction, 5(5), 427-437.
[5]. Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in construction, 13(1), 5-19.
[6]. Ma, G., Buswell, R., da Silva, W. R. L., Wang, L., Xu, J., and Jones, S. Z. (2022). Technology readiness: A global snapshot of 3D concrete printing and the frontiers for development. Cement and Concrete Research, 156, 106774.
[7]. Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G., andThorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in construction, 21, 262-268.
[8]. Zhang,C.,Nerella,V.N.,Krishna,A.,Wang,S.,Zhang,Y.,Mechtcherine,V.,andBanthia, N. (2021). Mix design concepts for 3D printable concrete: A review. Cement and Concrete Composites, 122, 104155.
191
[9]. Zhang,J.,Wang,J.,Dong,S.,Yu,X.,andHan,B.(2019).Areviewofthecurrentprogress and application of 3D printing concrete. Composites Part A: Applied Science and Manufacturing, 125, 105533..
[10].Salet, T. A., Ahmed, Z. Y., Bos, F. P., andLaagland, H. L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236.
[11].Hager, I., Golonka, A., andPutanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction?. Procedia Engineering, 151, 292- 299.
[12].Mechtcherine, V., Bos, F. P., Perrot, A., Da Silva, W. L., Nerella, V. N., Fataei, S., ... andRoussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cement and Concrete Research, 132, 106037.
[13].Suiker, A. S. J. (2018). Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. International Journal of Mechanical Sciences, 137, 145-170.
[14].Nerella, V. N., Näther, M., Iqbal, A., Butler, M., andMechtcherine, V. (2019). Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Composites, 95, 260-270.
[15].Chen, Y., He, S., Gan, Y., Çopuroğlu, O., Veer, F., andSchlangen, E. (2022). A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. Journal of Building Engineering, 45, 103599.
[16].Perrot, A., Rangeard, D., Melinge, Y., Estelle, P., and Lanos, C. (2009). Extrusion criterion for firm cement-based materials. Applied Rheology, 19(5), 53042-1.
192

[17].田澤皓,(2020),「3D 列印混凝土層間界面的力學和耐久性能研究」,碩士論文, 河北工業大學。
[18].Paul, S. C., van Zijl, G. P. A. ., Tan, M. J., andGibson, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal.
[19].Roussel, N. (2018). “Rheological requirements for printable concretes.” Cement and Concrete Research, 112, 76-85.
[20].Hou, S., Duan, Z., Xiao, J., andYe, J. (2020). “A review of 3D printed concrete: Performance requirements, testing measurements and mix design.” Construction and Building Materials, 121745.
[21].Yu, K., McGee, W., Ng, T. Y., Zhu, H., andLi, V. C. (2021). “3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties.” Cement and Concrete Research, 143, 106388.
[22].Ji, G., Ding, T., Xiao, J., Du, S., Li, J. and Duan, Z. (2019). “A 3D Printed Ready-Mixed Concrete Power Distribution Substation: Materials and Construction Technology.” Materials, 12(9), 1540.
[23].Toutou, Z., Roussel, N., andLanos, C. (2005). The squeezing test: a tool to identify firm cement-based material′s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research, 35(10), 1891-1899.
[24].Ma, G., Li, Z., andWang, L. (2018). Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and building materials, 162, 613-627.
[25].Choi, M. S., Kim, Y. J., andKim, J. K. (2014). Prediction of concrete pumping using various rheological models. International Journal of Concrete Structures and Materials, 8, 269-278.
193

[26].Feys, D., Khayat, K. H., andKhatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure?. Cement and Concrete Composites, 66, 38-46
[27].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., andThorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45, 1221-1232.
[28].Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., ... and Banthia, N. (2021). Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites, 122, 104158.
[29].Tay, Y. W. D., Qian, Y., andTan, M. J. (2019). Printability region for 3D concrete printing using slump and slump flow test. Composites Part B: Engineering, 174, 106968.
[30].Wolfs, R. J. M., Bos, F. P., andSalet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132-140.
[31].Mohan, M. K., Rahul, A. V., Van Tittelboom, K., andDe Schutter, G. (2021). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research, 139, 106258.
[32].Yuan, Q., Li, Z., Zhou, D., Huang, T., Huang, H., Jiao, D., andShi, C. (2019). A feasible method for measuring the buildability of fresh 3D printing mortar. Construction and building materials, 227, 116600.
[33].Weng, Y., Lu, B., Li, M., Liu, Z., Tan, M. J., andQian, S. (2018). Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials, 189, 676-685.
194

[34].Lu, B., Weng, Y., Li, M., Qian, Y., Leong, K. F., Tan, M. J., andQian, S. (2019). A systematical review of 3D printable cementitious materials. Construction and Building Materials, 207, 477-490.
[35].中國工程建設標準化協會,(2021),「中國工程建設標準化協會標準-混凝 土 3D 列 印技術規程」,中國工程建設標準化協會。
[36].Li, Z., Wang, L., andMa, G. (2018). Method for the enhancement of buildability and bending resistance of 3D printable tailing mortar. International Journal of Concrete Structures and Materials, 12(1), 1-12.
[37].Chen, Y., Chaves Figueiredo, S., Yalçinkaya, Ç., Çopuroğlu, O., Veer, F., andSchlangen, E. (2019). The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based cementitious material for extrusion-based 3D concrete printing. Materials, 12(9), 1374.
[38].Panda, B., Ruan, S., Unluer, C., andTan, M. J. (2019). Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Composites Part B: Engineering, 165, 75-83.
[39].Chen, Y., Figueiredo, S. C., Li, Z., Chang, Z., Jansen, K., Çopuroğlu, O., andSchlangen, E. (2020). Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, 132, 106040.
[40].Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., andSanjayan, J. (2020). Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, 257, 119546.
[41].Kolawole, J. T., Combrinck, R., andBoshoff, W. P. (2019). Measuring the thixotropy of conventional concrete: The influence of viscosity modifying agent, superplasticiser and water. Construction and Building Materials, 225, 853-867.
195

[42].Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., andZhang, X. (2021). Effects of HPMC on workability and mechanical properties of concrete using iron tailings as aggregates. Materials, 14(21), 6451.
[43].Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., andLi, H. (2017). Effect of constituents on rheological properties of fresh concrete-A review. Cement and concrete composites, 83, 146-159.
[44].Tan, M. J., Lu, B., andQian, S. Z. (2016). A review of 3D printable construction materials and applications.
[45].Xiao, J., Liu, H., andDing, T. (2021). Finite element analysis on the anisotropic behavior
of 3D printed concrete under compression and flexure. Additive Manufacturing, 39,
101712.
[46].Che, Y. and Yang, H. (2022). “Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate.” Case Studies in Construction Materials, 17, e01590.
[47].Geng, Z., She, W., Zuo, W., Lyu, K., Pan, H., Zhang, Y. and Miao, C. (2020). “Layer- interface properties in 3D printed concrete: Dual hierarchical structure and micromechanical characterization.” Cement and Concrete Research, 138, 106220.
[48].Sanjayan, J. G., Nematollahi, B., Xia, M., andMarchment, T. (2018). Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and building materials, 172, 468-475.
[49].Baz, B., Aouad, G., Kleib, J., Bulteel, D., andRemond, S. (2021). Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments. Construction and Building Materials, 290, 123220.
[50].Tayeh, B. A., Bakar, B. A., Johari, M. M., andVoo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra
196

high performance fiber concrete overlay. Construction and building materials, 36, 538-
548.
[51].Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., ... andDu, S. (2021). Large- scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, 122, 104115.
[52].侯澤宇,「3D 打印纖維增強混凝土的製備與性能研究」,碩士論文,東南大學 [53].Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened
properties. Resources, Conservation and Recycling, 55(11), 923-932.
[54].Luo, T., Hua, C., Liu, F., Sun, Q., Yi, Y., andPan, X. (2022). Effect of adding solid waste silica fume as a cement paste replacement on the properties of fresh and hardened
concrete. Case Studies in Construction Materials, 16, e01048.
[55].Sanjayan, J. G., Nematollahi, B., Xia, M., andMarchment, T. (2018). Effect of surface
moisture on inter-layer strength of 3D printed concrete. Construction and building
materials, 172, 468-475.
[56].Jay G. Sanjayan,“Properties of 3D-Printed Fiber-Reinforced Portland Cement
Paste”,Construction and Building Materials 172 (2018) 468–475.
[57].Hambach, M., Rutzen, M., andVolkmer, D. (2019). Properties of 3D-printed fiber- reinforced Portland cement paste. In 3D concrete printing technology (pp. 73-113). Butterworth-Heinemann.
[58].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., andThorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45, 1221-1232.
[59].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G., andThorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42(3), 558-566.
197

[60].Panda, B., Paul, S. C., andTan, M. J. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146- 149.
[61]. 吳禺澄,「超高性能混凝土早期齡期之工程行為研究」,國立中興大學土木工程學 系,碩士論文 ,2019.
[62].Li, Y., Tan, K. H., andYang, E. H. (2018). Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 169, 629-637.
[63].Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., andFang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741-751.
[64].Wang, X., He, J., Mosallam, A. S., Li, C., andXin, H. (2019). The effects of fiber length and volume on material properties and crack resistance of basalt fiber reinforced concrete (BFRC). Advances in Materials Science and Engineering, 2019, 1-17.
[65].Jiang, C., Fan, K., Wu, F., andChen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials andDesign, 58, 187-193.
[66].Shiwei Yu,“Microstructural characterization of 3D printed concrete”, Journal of Building Engineering 44 (2021) 102948
[67].Al-Rousan, E. T., Khalid, H. R., andRahman, M. K. (2023). Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review. Developments in the Built Environment, 100155.
[68].M. Hassani Niaki,“Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete”, Accepted Manuscript (2018).
198

[69].Katkhuda, H., andShatarat, N. (2017). Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Construction and Building Materials, 140, 328-335.
[70].Hu, X., Guo, Y., Lv, J., andMao, J. (2019). The mechanical properties and chloride resistance of concrete reinforced with hybrid polypropylene and basalt fibres. Materials, 12(15), 2371
[71].Yao, S. S., Jin, F. L., Rhee, K. Y., Hui, D., andPark, S. J. (2018). Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering, 142, 241-250.
[72].Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., andZhang, X. (2021). Effects of HPMC on workability and mechanical properties of concrete using iron tailings as aggregates. Materials, 14(21), 6451.
[73].Lachemi, M., Hossain, K. M. A., Lambros, V., Nkinamubanzi, P. C., andBouzoubaâ, N. (2004). Self-consolidating concrete incorporating new viscosity modifying admixtures. Cement and Concrete Research, 34(6), 917-926.
[74].Leemann, A., andWinnefeld, F. (2007). The effect of viscosity modifying agents on mortar and concrete. Cement and Concrete Composites, 29(5), 341-349.
[75].Ye, J., Cui, C., Yu, J., Yu, K., andDong, F. (2021). Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Construction and Building Materials, 281, 122586.
[76].Ma, G., Li, Z., Wang, L., Wang, F., andSanjayan, J. (2019). Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 202, 770-783.
199

[77].Yang, L., Zhang, Y., Liu, Z., Zhao, P., andLiu, C. (2015). In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing. Materials Letters, 160, 381-383.
[78].Yuan, Z., andJia, Y. (2021). Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Construction and Building Materials, 266, 121048.
[79].He, J., Wang, Q., Yao, B., & Ho, J. (2021). Mechanical properties of high strength POM- FRCC and its performance under elevated temperatures. Construction and Building Materials, 290, 123177.
[80].Li, Y., Tan, K. H., & Yang, E. H. (2018). Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 169, 629-637.
[81].Yokota, H., Rokugo, K., & Sakata, N. (2008). JSCE recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks. In High Performance Fiber Reinforced Cement Composites (Vol. 2). Tokyo, Japan: Springer.
指導教授 王韡蒨(WEI-CHIEN WANG) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明