博碩士論文 110322089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.135.221.17
姓名 陳宜和(YI-HO, CHEN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討臺灣地震活動特徵與環境變數相關性分析
(Investigating the Correlation between the Characteristics of Seismic Activity and Environmental Variables in Taiwan)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 運用訊號分析方法於地下水資源旱災韌性與風險評估★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響
★ 水文地質條件不確定性下的地下水時空變化模擬★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型
★ 以深度學習方法建立地下水位預警之風險評估模型★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例
★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 由於台灣位於環太平洋火山地震帶上,幾乎每天都有規模不一的地震活動發生。其中,部分地震活動事件進而造成了嚴重的災害,導致個人財產損失、人員傷亡以及損壞重要公共設施。因此,研究地震活動的長期時空機制是了解地震活動成因以及未來預測地震活動從而提早進行相關預防災害措施的關鍵任務。
然以往的地震相關研究,主要集中在探討小時空尺度上單一地震事件的誘發成因及背後機制。而在此研究中,使用從1987年至2020年台灣地區及附近海域的有效記錄數據,包括美國地質調查局(USGS)的地震長期記錄事件、中央氣象局(CWB)的每日大氣溫度等環境因素以及美國國家海洋暨大氣總署(NOAA)的每日海洋表面溫度資料,觀察並探討台灣從1987年至2020年間地震事件與大氣溫度及海洋表面溫度間溫差的異常發生頻率以及地震事件的發生與大氣溫度及海洋表面溫度間溫差異常發生的相關性。以便探討因為陸地與海洋比熱的改變所產生的溫差將可能對地表的海陸交界處產生應力,是否會進而誘發地震的發生。結果表明,許多地震事件從地震發生前21日至後7日,常有相較於以往同段時期下的溫差有異常發生,並且在不同的芮氏規模下有其特定的溫差異常趨勢。在芮氏規模2.5到4以及芮氏規模大於6的地震事件中,幾乎所有地震事件與無地震事件有大氣溫度及海洋表面溫度間溫差的顯著異常差異。
本研究發現了地震事件與大氣溫度及海洋表面溫度間溫差的異常發生頻率特徵,以及透過顯著性差異統計分析,比較地震事件與無地震事件之間溫差的顯著差異。最後再利用機器學習模型的邏輯迴歸(Logistic regression)、隨機森林(Random forest) 和多層感知機(Multilayer Perceptron, MLP)來識別於不同芮氏規模區間下,是否會有地震事件發生。其中表現最好與最穩定的為MLP分類模型,並且在判斷芮氏規模大於6的區間中,有高達93%的準確率。希冀本研究能為未來地震活動預測提供相關資訊,從而更準確地預防地震活動可能引發的災害。
摘要(英) Since Taiwan is located at the Pacific Ring of Fire, seismic activity of varying magnitudes occurs almost every day. Among them, some of these seismic activities have in turn caused severe disasters, resulting in loss of personal property, casualties and damage to important public facilities. Therefore, investigating the long-term spatiotemporal pattern of seismic activities is a crucial task for understanding the causes of seismic activity and to predict future seismic activity, in order to carry out disaster prevention measures in advance.
Previous studies mostly focused on the causes of single seismic events on the small spatiotemporal scale. In this study, the data from 1987 to 2020 are used, including seismic events from the United States Geological Survey (USGS), the ambient environmental factors such as daily air temperature from Taiwan Central Weather Bureau (CWB) and daily sea surface temperature data from National Oceanic and Atmospheric Administration (NOAA). Then the temperature difference between the land surface temperature (LST) and the sea surface temperature (SST) to the correlation between the occurrence of seismic activities and the abnormal occurrence of temperature difference are compared. In order to explore whether the temperature difference caused by the change of the specific heat of the land and the ocean may cause stress on the land-sea junction on the surface, and whether it will trigger seismic activity . The results show that lots of seismic activities often have positive and negative anomalies of temperature difference from twenty-one days before to seven days after the seismic event. Moreover, there is a specific trend of temperature difference anomalies under different magnitude intervals. In the magnitude range of 2.5 to 4 and greater than 6, almost all of the seismic events have significant anomalous differences in the temperature difference between LST and SST compared with no seismic events.
This study uncovers anomalous frequency signatures of seismic activities and temperature differences between LST and SST. The significant difference in temperature difference between seismic events and non-seismic events was compared by using statistical analysis. Additionally, the multilayer perceptron, logistic regression and random forest of machine learning model was used to identify whether there will be a seismic event under different magnitude intervals. It is hoped that it can provide relevant information for the prediction of future seismic activity, to more accurately prevent disasters that may be caused by seismic activity.
關鍵字(中) ★ 地震活動
★ 海陸溫差
★ 顯著性差異統計
★ 機器學習
關鍵字(英) ★ Seismic Activity
★ LST
★ SST
★ Statistical Analysis
★ Machine Learning
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 論文框架 6
第二章 文獻回顧 7
2.1 板塊運動引發地震事件 7
2.2 其他可能誘發地震事件的因子 9
2.3 地震事件與溫度及氣候之間的關聯性 13
2.4 地震事件與降雨之間的關係 15
2.5 機器學習模型於地震事件上的相關應用 17
2.5.1 邏輯迴歸模型 17
2.5.2 隨機森林模型 20
2.5.3 多層感知機模型與深度神經網路模型 22
2.6 文獻評析 24
第三章 研究方法 25
3.1 研究架構 25
3.2 資料蒐集與描述 28
3.2.1 長期記錄地震事件資料 28
3.2.2 相關環境變數因子資料 30
3.2.3 海洋表面溫度資料 36
3.2.4 資料前處理步驟 37
3.3 聚類分析(Cluster Analysis) 38
3.3.1 肘部法(Elbow method) 40
3.3.2 輪廓係數分析法(Silhouette method) 41
3.4 統計顯著性差異檢定 42
3.4.1 獨立樣本t檢定(Independent Sample t-test) 43
3.4.2 F檢定(F-test) 44
3.5 邏輯迴歸模型(Logistic regression) 45
3.6 隨機森林模型(Random Forest) 47
3.7 多層感知機(Multilayer Perceptron, MLP) 53
第四章 結果與討論 56
4.1 有無地震事件之定義與區域判斷之分析 56
4.2 大氣溫度及海洋表面溫度間溫差的異常之分析 61
4.3 建立機器學習模型前的前處理 76
4.4 隨機森林之模型分析 79
4.5 多層感知機之模型分析 82
4.6 機器學習模型之比較 86
第五章 結論與建議 87
5.1 結論 87
5.2 建議 89
5.3 貢獻 90
參考文獻 91
評審意見回覆表 105
參考文獻 Abdulhafedh, A. (2021). Incorporating k-means, hierarchical clustering and pca in customer segmentation. Journal of City and Development, 3(1), 12-30.
Aden‐Antoniów, F., Frank, W., & Seydoux, L. (2022). An adaptable random forest model for the declustering of earthquake catalogs. Journal of Geophysical Research: Solid Earth, 127(2), e2021JB023254.
Akhoondzadeh, M. (2013). A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Advances in Space Research, 51(11), 2048-2057.
Allen, R. M., Kong, Q., & Martin-Short, R. (2020). The myshake platform: a global vision for earthquake early warning. Pure and Applied Geophysics, 177, 1699-1712.
Andajani, R. D., Tsuji, T., Snieder, R., & Ikeda, T. (2020). Spatial and temporal influence of rainfall on crustal pore pressure based on seismic velocity monitoring. Earth, Planets and Space, 72(1), 1-17.
Ao, Y., Li, H., Zhu, L., Ali, S., & Yang, Z. (2019). The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. Journal of Petroleum Science and Engineering, 174, 776-789.
Asim, K. M., Idris, A., Martínez-Álvarez, F., & Iqbal, T. (2016). Short term earthquake prediction in Hindukush region using tree based ensemble learning. Paper presented at the 2016 International conference on frontiers of information technology (FIT).
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., . . . Camerer, C. (2018). Redefine statistical significance. Nature human behaviour, 2(1), 6-10.

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
Blanpied, M., Lockner, D., & Byerlee, J. (1991). Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophysical Research Letters, 18(4), 609-612.
Bowles‐Martinez, E., & Schultz, A. (2020). Composition of magma and characteristics of the hydrothermal system of Newberry volcano, Oregon, from Magnetotellurics. Geochemistry, Geophysics, Geosystems, 21(3), e2019GC008831.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Budiman, K., & Ifriza, Y. N. (2021). Analysis of earthquake forecasting using random forest. Journal of soft computing exploration, 2(2), 153-162.
Buforn, E., Bezzeghoud, M., UdÍas, A., & Pro, C. (2004). Seismic sources on the Iberia-African plate boundary and their tectonic implications. Pure and Applied Geophysics, 161, 623-646.
Buscema, M. (1998). Back propagation neural networks. Substance use & misuse, 33(2), 233-270.
Buturovic, L., & Citkusev, L. (1992). Back propagation and forward propagation. Paper presented at the [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.
Chaurasia, K., Kanse, S., Yewale, A., Singh, V. K., Sharma, B., & Dattu, B. (2019). Predicting damage to buildings caused by earthquakes using machine learning techniques. Paper presented at the 2019 IEEE 9th International Conference on Advanced Computing (IACC).
Chen, C.-H., Wang, C.-H., Wen, S., Yeh, T.-K., Lin, C.-H., Liu, J.-Y., . . . Lin, T.-W. (2013). Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan. Hydrology and Earth System Sciences, 17(5), 1693-1703.

Chen, Y., Zheng, W., Li, W., & Huang, Y. (2021). Large group activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recognition Letters, 144, 1-5.
Chigira, M., Wu, X., Inokuchi, T., & Wang, G. (2010). Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 118(3-4), 225-238.
Cremen, G., & Galasso, C. (2020). Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 205, 103184.
Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow method. Accounting, Auditing and Finance, 1(1), 5-8.
De Winter, J. C. (2013). Using the Student′s t-test with extremely small sample sizes. Practical Assessment, Research, and Evaluation, 18(1), 10.
Derakhshani, A., & Foruzan, A. H. (2019). Predicting the principal strong ground motion parameters: A deep learning approach. Applied Soft Computing, 80, 192-201.
Dong, L., Wesseloo, J., Potvin, Y., & Li, X. (2016). Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression. Rock Mechanics and Rock Engineering, 49, 183-211.
Einarsson, P. (2008). Plate boundaries, rifts and transforms in Iceland. Jökull, 58(12), 35-58.
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942.
Flinders, A. F., Shelly, D. R., Dawson, P. B., Hill, D. P., Tripoli, B., & Shen, Y. (2018). Seismic evidence for significant melt beneath the Long Valley Caldera, California, USA. Geology, 46(9), 799-802.
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438-514.
Frades, I., & Matthiesen, R. (2010). Overview on techniques in cluster analysis. Bioinformatics methods in clinical research, 81-107.

Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci., 33, 335-367.
Frick, R. W. (1996). The appropriate use of null hypothesis testing. Psychological Methods, 1(4), 379.
Galkina, A., & Grafeeva, N. (2019). Machine learning methods for earthquake prediction: A survey. Paper presented at the Proceedings of the Fourth Conference on Software Engineering and Information Management (SEIM-2019), Saint Petersburg, Russia.
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., van Wees, J.-D., & Kohl, T. (2015). Induced seismicity in geothermal reservoirs: A review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52, 1473-1490.
Gerald, B. (2018). A brief review of independent, dependent and one sample t-test. International journal of applied mathematics and theoretical physics, 4(2), 50-54.
Ghojogh, B., & Crowley, M. (2019). The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial. arXiv preprint arXiv:1905.12787.
Gibson, G., & Sandiford, M. (2013). Seismicity and induced earthquakes. Background paper to NSW Chief Scientist and Engineer (OCSE). Univ. Melbourne, 33.
Gomberg, J., Beeler, N., Blanpied, M., & Bodin, P. (1998). Earthquake triggering by transient and static deformations. Journal of Geophysical Research: Solid Earth, 103(B10), 24411-24426.
Gomberg, J., Reasenberg, P., Bodin, P. l., & Harris, R. (2001). Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature, 411(6836), 462-466.
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., . . . Dahm, T. (2017). Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Reviews of Geophysics, 55(2), 310-340.
Gubbins, D., Willis, A. P., & Sreenivasan, B. (2007). Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Physics of the Earth and planetary Interiors, 162(3-4), 256-260.
Gupta, H. K. (1992). Reservoir induced earthquakes: Elsevier.
Hainzl, S., Kraft, T., Wassermann, J., Igel, H., & Schmedes, E. (2006). Evidence for rainfall‐triggered earthquake activity. Geophysical Research Letters, 33(19).
Hajeb, M., Karimzadeh, S., & Matsuoka, M. (2020). SAR and LIDAR datasets for building damage evaluation based on support vector machine and random forest algorithms—A case study of Kumamoto earthquake, Japan. Applied Sciences, 10(24), 8932.
Han, H., Guo, X., & Yu, H. (2016). Variable selection using mean decrease accuracy and mean decrease gini based on random forest. Paper presented at the 2016 7th ieee international conference on software engineering and service science (icsess).
Han, J., Park, S., Kim, S., Son, S., Lee, S., & Kim, J. (2019). Performance of logistic regression and support vector machines for seismic vulnerability assessment and mapping: a case study of the 12 September 2016 ML5. 8 Gyeongju Earthquake, South Korea. Sustainability, 11(24), 7038.
Hayat, M. J. (2010). Understanding statistical significance. Nursing research, 59(3), 219-223.
Hilbe, J. M. (2009). Logistic regression models: CRC press.
Hill, D. P., Bailey, R. A., & Ryall, A. S. (1985). Active tectonic and magmatic processes beneath Long Valley caldera, eastern California: An overview. Journal of Geophysical Research: Solid Earth, 90(B13), 11111-11120.
Hill, D. P., Pollitz, F., & Newhall, C. (2002). Earthquake-volcano interactions. Physics Today, 55(11), 41-47.
Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398): John Wiley & Sons.

Huang, B. F., & Boutros, P. C. (2016). The parameter sensitivity of random forests. BMC bioinformatics, 17(1), 1-13.
Huang, J., Wang, X., Zhao, Y., Xin, C., & Xiang, H. (2018). Large earthquake magnitude prediction in Taiwan based on deep learning neural network. Neural Network World, 28(2), 149-160.
Hung, H. J., O′Neill, R. T., Bauer, P., & Kohne, K. (1997). The behavior of the p-value when the alternative hypothesis is true. biometrics, 11-22.
Ide, S., Yabe, S., & Tanaka, Y. (2016). Earthquake potential revealed by tidal influence on earthquake size–frequency statistics. Nature Geoscience, 9(11), 834-837.
Jairi, I., Fang, Y., & Pirhadi, N. (2021). Application of Logistic Regression Based on Maximum Likelihood Estimation to Predict Seismic Soil Liquefaction Occurrence. Human-Centric Intelligent Systems, 1(3-4), 98-104.
Johnson, C. W., Fu, Y., & Bürgmann, R. (2017). Seasonal water storage, stress modulation, and California seismicity. Science, 356(6343), 1161-1164.
Keiding, M., Lund, B., & Árnadóttir, T. (2009). Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland. Journal of Geophysical Research: Solid Earth, 114(B9).
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448-451.
Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S. Y., & Seo, W. (2018). Assessing whether the 2017 M w 5.4 Pohang earthquake in South Korea was an induced event. Science, 360(6392), 1007-1009.
Kim, T. K. (2015). T test as a parametric statistic. Korean journal of anesthesiology, 68(6), 540-546.

King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
Kirasich, K., Smith, T., & Sadler, B. (2018). Random forest vs logistic regression: binary classification for heterogeneous datasets. SMU Data Science Review, 1(3), 9.
Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95.
Kreemer, C., Holt, W. E., & Haines, A. J. (2003). An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International, 154(1), 8-34.
Kusky, T. M. (2008). Earthquakes: plate tectonics and earthquake hazards: Infobase Publishing.
Lai, T.-J., Chang, C.-M., Connor, K. M., Lee, L.-C., & Davidson, J. R. (2004). Full and partial PTSD among earthquake survivors in rural Taiwan. Journal of psychiatric research, 38(3), 313-322.
Li, L., Doroslovački, M., & Loew, M. H. (2020). Approximating the gradient of cross-entropy loss function. IEEE Access, 8, 111626-111635.
Li, N., Li, B., Chen, D., Wang, E., Tan, Y., Qian, J., & Jia, H. (2020). Waveform characteristics of earthquakes induced by hydraulic fracturing and mining activities: Comparison with those of natural earthquakes. Natural Resources Research, 29, 3653-3674.
Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.
Liang, J. (2022). Confusion Matrix: Machine Learning. POGIL Activity Clearinghouse, 3(4).
Livingston, E. H. (2004). Who was student and why do we care so much about his t-test? 1. Journal of Surgical Research, 118(1), 58-65.
Lixin, Y., Dong, Z., & Chenglong, L. (2012). Preliminary study of reservoir‐induced seismicity in the Three Gorges reservoir, China. Seismological research letters, 83(5), 806-814.
Mahmoudi, J., Arjomand, M. A., Rezaei, M., & Mohammadi, M. H. (2016). Predicting the earthquake magnitude using the multilayer perceptron neural network with two hidden layers. Civil engineering journal, 2(1), 1-12.
Mallouhy, R., Abou Jaoude, C., Guyeux, C., & Makhoul, A. (2019). Major earthquake event prediction using various machine learning algorithms. Paper presented at the 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM).
Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z., & Burton, H. V. (2020). Classifying earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183-208.
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26(1), 643-696.
McGarr, A., & Barbour, A. J. (2017). Wastewater disposal and the earthquake sequences during 2016 near Fairview, Pawnee, and Cushing, Oklahoma. Geophysical Research Letters, 44(18), 9330-9336.
McGuire, J. J. (2008). Seismic cycles and earthquake predictability on East Pacific Rise transform faults. Bulletin of the Seismological Society of America, 98(3), 1067-1084.
McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U Test. The Corsini encyclopedia of psychology, 1-1.
Meier, M. A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., . . . Yue, Y. (2019). Reliable real‐time seismic signal/noise discrimination with machine learning. Journal of Geophysical Research: Solid Earth, 124(1), 788-800.

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., & Hamprecht, F. A. (2009). A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC bioinformatics, 10, 1-16.
Midzi, V., Zulu, B., Manzunzu, B., Mulabisana, T., Pule, T., Myendeki, S., & Gubela, W. (2015). Macroseismic survey of the ML5. 5, 2014 Orkney earthquake. Journal of Seismology, 19, 741-751.
Mignan, A., & Broccardo, M. (2020). Neural network applications in earthquake prediction (1994–2019): Meta‐analytic and statistical insights on their limitations. Seismological research letters, 91(4), 2330-2342.
Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. (2019). Application of student′s t-test, analysis of variance, and covariance. Annals of cardiac anaesthesia, 22(4), 407.
Morales-Simfors, N., Wyss, R. A., & Bundschuh, J. (2020). Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Critical reviews in environmental science and technology, 50(10), 979-1012.
Mousavi, S. M., & Beroza, G. C. (2020). A machine‐learning approach for earthquake magnitude estimation. Geophysical Research Letters, 47(1), e2019GL085976.
Nick, T. G., & Campbell, K. M. (2007). Logistic regression. Topics in biostatistics, 273-301.
Olshen, R. A. (1973). The conditional level of the F—Test. Journal of the American Statistical Association, 68(343), 692-698.
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., . . . Panet, I. (2015). Science and user needs for observing global mass transport to understand global change and to benefit society. Surveys in Geophysics, 36, 743-772.

Phung, V. H., & Rhee, E. J. (2019). A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Applied Sciences, 9(21), 4500.
Popescu, M.-C., Balas, V. E., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7), 579-588.
Rümpker, G., Ryberg, T., & Bock, G. (2003). Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy. Nature, 425(6957), 497-501.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐Arroita, G., . . . Thuiller, W. (2017). Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913-929.
Roeloffs, E. (1996). Poroelastic techniques in the study of earthquake-related hydrologic phenomena. In Advances in geophysics (Vol. 37, pp. 135-195): Elsevier.
Ross, A., Willson, V. L., Ross, A., & Willson, V. L. (2017). Independent samples T-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 13-16.
Rynkiewicz, J. (2012). General bound of overfitting for MLP regression models. Neurocomputing, 90, 106-110.
Saini, A. (2021). Conceptual understanding of logistic regression for data science beginners. web-article), analyticsvidhya. com.
SAPUTRA, D. M., SAPUTRA, D., & OSWARI, L. D. (2020). Effect of distance metrics in determining k-value in k-means clustering using elbow and silhouette method. Paper presented at the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019).

Schultz, R., Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic fracturing‐induced seismicity. Reviews of Geophysics, 58(3), e2019RG000695.
Scornet, E. (2017). Tuning parameters in random forests. ESAIM: Proceedings and Surveys, 60, 144-162.
Shah, H., Ghazali, R., & Nawi, N. M. (2011). Using artificial bee colony algorithm for MLP training on earthquake time series data prediction. arXiv preprint arXiv:1112.4628.
Shah, S. H., Angel, Y., Houborg, R., Ali, S., & McCabe, M. F. (2019). A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 11(8), 920.
Shaver, J. P. (1993). What statistical significance testing is, and what it is not. The Journal of Experimental Education, 61(4), 293-316.
Shen, Z., Pan, P., Zhang, D., & Huang, S. (2022). Rapid structural safety assessment using a deep neural network. Journal of Earthquake Engineering, 26(5), 2625-2641.
Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1-16.
Stabile, T. A., Giocoli, A., Lapenna, V., Perrone, A., Piscitelli, S., & Telesca, L. (2014). Evidence of low‐magnitude continued reservoir‐induced seismicity associated with the Pertusillo Artificial Lake (southern Italy). Bulletin of the Seismological Society of America, 104(4), 1820-1828.
Stein, S., & Wysession, M. (2009). An introduction to seismology, earthquakes, and earth structure: John Wiley & Sons.
Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., . . . Fukao, Y. (2012). Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience, 5(6), 414-418.
Syakur, M., Khotimah, B., Rochman, E., & Satoto, B. D. (2018). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. Paper presented at the IOP conference series: materials science and engineering.
Šílený, J., & Milev, A. (2008). Source mechanism of mining induced seismic events—Resolution of double couple and non double couple models. Tectonophysics, 456(1-2), 3-15.
Talwani, P. (1997). On the nature of reservoir-induced seismicity. Pure and Applied Geophysics, 150, 473-492.
Tao, W., Masterlark, T., Shen, Z. K., & Ronchin, E. (2015). Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. Journal of Geophysical Research: Solid Earth, 120(10), 7033-7047.
Taud, H., & Mas, J. (2018). Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios, 451-455.
Thisted, R. A. (1998). What is a P-value. Departments of Statistics and Health Studies.
Tiku, M. (1967). Tables of the power of the F-test. Journal of the American Statistical Association, 62(318), 525-539.
Toda, S., Stein, R. S., Richards‐Dinger, K., & Bozkurt, S. B. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5).
Vallejos, J., & McKinnon, S. (2013). Logistic regression and neural network classification of seismic records. International Journal of Rock Mechanics and Mining Sciences, 62, 86-95.
Vens, C., & Costa, F. (2011). Random forest based feature induction. Paper presented at the 2011 IEEE 11th international conference on data mining.

Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, 710(1), 120-127.
Wang, C. Y., & Manga, M. (2010). Hydrologic responses to earthquakes and a general metric. Geofluids, 10(1‐2), 206-216.
Wang, F., Franco-Penya, H.-H., Kelleher, J. D., Pugh, J., & Ross, R. (2017). An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity. Paper presented at the Machine Learning and Data Mining in Pattern Recognition: 13th International Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, Proceedings 13.
Wang, Q., Yu, S., Qi, X., Hu, Y., Zheng, W., Shi, J., & Yao, H. (2019). Overview of logistic regression model analysis and application. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 53(9), 955-960.
Wang, S., Xu, W., Xu, C., Yin, Z., Bürgmann, R., Liu, L., & Jiang, G. (2019). Changes in groundwater level possibly encourage shallow earthquakes in central Australia: The 2016 Petermann Ranges earthquake. Geophysical Research Letters, 46(6), 3189-3198.
Woolson, R. F. (2007). Wilcoxon signed‐rank test. Wiley encyclopedia of clinical trials, 1-3.
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E., Sasgen, I., & Wahr, J. (2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics, 77(11), 116801.
Wu, J., & Wu, J. (2012). Cluster analysis and K-means clustering: an introduction. Advances in K-Means clustering: A data mining thinking, 1-16.
Wu, Y. M., Mittal, H., Huang, T. C., Yang, B. M., Jan, J. C., & Chen, S. K. (2019). Performance of a low‐cost earthquake early warning system (P‐Alert) and shake map production during the 2018 M w 6.4 Hualien, Taiwan, earthquake. Seismological Research Letters, 90(1), 19-29.

Xie, Y., Ebad Sichani, M., Padgett, J. E., & DesRoches, R. (2020). The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthquake Spectra, 36(4), 1769-1801.
Yan, R., Chen, X., Sun, H., Xu, J., & Zhou, J. (2022). A review of tidal triggering of global earthquakes. Geodesy and Geodynamics.
Yue, L.-F., Suppe, J., & Hung, J.-H. (2005). Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw= 7.6). Journal of Structural Geology, 27(11), 2058-2083.
Zhang, W., & Goh, A. T. (2016). Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression. Geomech Eng, 10(3), 269-284.
Zhang, Y., Guo, X., Zhong, M., Shen, W., Li, W., & He, B. (2010). Wenchuan earthquake: Brightness temperature changes from satellite infrared information. Chinese Science Bulletin, 55(18), 1917-1924.
Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic signal denoising and decomposition using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476-9488.
指導教授 林遠見(Yuan-Chien, Lin) 審核日期 2023-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明