博碩士論文 110322097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.147.44.226
姓名 劉震(Zhen Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋼 筋 混 凝 土 構 架 含 填 充 磚 牆 機 率 式 地 震 風 險 分 析
(Probabilistic seismic analysis for reinforced concrete frames with masonry-infilled walls)
相關論文
★ Nonlinear Analysis of Reinforced Concrete Structures using The Novel Implicit Nonlinear Dynamic Finite Element method★ 數據驅動之鋼筋混凝土構架機率式地震風險評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 台灣位處環太平洋地震帶,每年平均發生 18500 次地震,當中有
多次致災型地震,如 1999 年集集地震、2016 年美濃地震、2022 池上
關山地震。在歷次震災中,可發現許多鋼筋混凝土房屋(Reinforced
Concrete,RC)的災損甚至是倒塌,其中不乏有 RC 構架含填充磚牆的
案例。根據內政部統計,台灣房屋平均年齡為 33 年,隨著屋齡持續
老化,大量 RC 構架含填充磚牆建築的地震風險也越來越高。換言之,
如何有效分析評估此類結構的耐震性能與倒塌風險是當前一個重要
的課題。
既有填充磚牆數值模擬時所採用之經驗公式是由實驗數據擬合
而來,使用時需要經過多次校正,過程繁瑣導致實務上結構分析常常
忽略填充磚牆。新近發展之機率式地震風險評估可以考慮結構動力反
應與地表運動的不確定性,且其評估結果描述倒塌機率與金錢損失,
比傳統性能評估更容易理解。然而當中需透過大量非線性動力歷時分
析來了解結構物在不同地震強度下的反應,如何有效地建立 RC 構架
含填充磚牆便是當前學術界與實務界都面臨的一個難題。
有鑒於此,本研究透過大量蒐集國內外RC構架含填充磚牆試體,
結合了開源之地震工程分析軟體 OpenSees 與 Python 來實現RC構架含填充磚牆之自動化建模,其中特別針對 Pinching4 模型與實驗所得
遲滯迴圈進行驗證,結果顯示所提之自動化程式可更準確模擬含填充
磚牆構架之遲滯迴圈行為。。本研究同時導入機率式地震風險分析來
評估 RC 構架含填充磚牆之倒塌風險,透過自動化程式有效提升非線
性動力歷時分析的效率。結果顯示,考慮填充磚牆較無考慮之純構架
結構由於側向勁度不同,亦會影響倒塌機率。
摘要(英) Taiwan is in the Pacific seismic zone and experiences an average of 18,500 earthquakes per year, including several disastrous ones, such as the 1999 Chi-Chi earthquake, the 2016 Meinong earthquake, and the 2022 Chishang-Guanshan earthquake. Many reinforced concrete (RC) buildings, especially those with RC frames and masonry-infill walls, have suffered significant damage or even collapse in these earthquakes. According to the
Ministry of the Interior, Taiwan′s average age of buildings is 33 years. As the building age increases, the seismic risk for structures with RC frames and masonry-infill walls also increases. Therefore, effectively analyzing and assessing such structures′ seismic performance and collapse risk is an important issue. This study focuses on the seismic risk of older buildings in Taiwan, particularly the RC moment frames with masonry-infill walls.Existing numerical simulations of masonry-infill walls often use empirical formulas derived from experimental data, requiring multiple corrections and making the process cumbersome. This often leads to the neglect of masonry-infill walls in practical analysis. Recent developments
in probabilistic seismic risk assessment, which consider uncertainties in structural dynamic response and ground motion, provide more understandable results in terms of collapse probability and economic loss compared to traditional performance assessments. However, understanding
the structural response under different earthquake intensities requires extensive nonlinear dynamic time-history analysis, and establishing models for RC frames with masonry-infill walls is a current challenge for academics and practitioners.
In light of this, the study involves the extensive collection of specimens of RC frames with masonry-infill walls from both domestic and international sources. It integrates the open-source seismic engineering analysis software OpenSees with Python to achieve automated modeling of RC frames with masonry-infill walls. Particular emphasis is placed on the Pinching4 model and validating the hysteresis loops obtained from
experiments. The results show that the proposed automated program can more accurately simulate the hysteresis behavior of structures with masonry-infill walls. This study also incorporates probabilistic seismic risk assessment to assess the collapse risk of RC frames with masonry-infill walls, effectively improving the efficiency of nonlinear time-history analysis. The findings indicate that masonry-infill walls, which differ in lateral stiffness from pure frame structures, also impact the probability of collapse.
關鍵字(中) ★ 鋼筋混凝土構架
★ 填充磚牆
★ 等值拉壓桿
★ 自動化建模
★ 遲滯迴圈
★ 機率式地震風險分析
關鍵字(英) ★ OpenSees
論文目次 目錄
摘要............................................................................................................. i
ABSTRACT............................................................................................. vii
致謝........................................................................................................... ix
目錄........................................................................................................... xi
圖目錄..................................................................................................... xiv
表目錄.................................................................................................... xvii
第一章 緒論...............................................................................................1
1.1 研究動機與目的............................................................................1
1-2 文獻探討 ......................................................................................3
1-3 論文架構 ....................................................................................11
第二章 OpenSees 介紹與模型驗證........................................................13
2-1 OpenSees 簡介 ............................................................................13
2-2 TCL 程式語言介紹.....................................................................14
2-3 OpenSees 基本語法...................................................................16
xii
2-3-1 定義模型幾何和材料.............................................................16
2-3-2 建立結構模型.........................................................................17
2-3-3 定義荷載和邊界條件.............................................................17
定義荷載模式,如地震荷載、施工荷載等 ...................................17
2-3-4 定義分析方法.........................................................................18
2-3-5 進行分析.................................................................................18
2-3-6 獲取處理結果.........................................................................19
2-4 非線性行為模型介紹.................................................................20
2-4-1 纖維斷面.................................................................................20
2-5 OpenSees 語法介紹....................................................................21
第三章、磚牆轉換為等值桿件介紹 ......................................................34
3-1 紅磚與砂漿介面摩擦強度 - f

(橫豎破壞)..........................34
3-2 磚牆之臨界破壞角....................................................................36
3-3 磚牆之面內水平剪力強度........................................................37
3-4 磚牆之水平位移 ........................................................................40
3-5 磚牆轉換等值斜撐模式............................................................44
xiii
3-6 試體介紹與驗證 ........................................................................47
第四章、自動化建模 ..............................................................................70
4-1 房屋模型自動化編程.................................................................70
4-2 鋼筋混凝土構架含磚牆試體驗證.............................................72
第五章、機率式地震風險評估 ..............................................................79
5-1 全概率決策框架 .........................................................................80
5-2 地震歷時波挑選 .........................................................................81
5-3 定義倒塌準則 .............................................................................84
5-4 增量動力分析 .............................................................................85
5-5 機率地震需求模型與易損曲線建立.........................................90
5-5-1 機率地震需求模型(PSDM)建立............................................90
第六章、結論與未來展望 ......................................................................98
6-1 結論 ............................................................................................98
6-2 未來展望 ....................................................................................99
參考文獻.................................................................................................101
參考文獻 [1] 許元馨 . (2015). 不同開口形式加強磚造磚牆面內側向加載試
驗.
[2] 楊廷文 .(2017). RC 構架內含偏心門窗開口加強磚造磚牆.
[3] 陳奕信. (2003). 含磚牆 RC 建築結構之耐震診斷.
[4] 國家地震工程研究中心. (2021). 開放式地震工程模擬系統
(OpenSees)於含塑鉸非線性結構之分析應用.
[5] Huang, H., Burton, H. V., & Sattar, S. (2020). Development and utilization of a database of infilled frame experiments for numerical modeling. Journal of Structural Engineering, 146(6), 04020079.
[6] 簡正彥. (2007). RC 構架磚牆側向推垮分析-使用 OpenSees 軟
體.
[7] Furtado, A., Rodrigues, H., & Arêde, A. (2015). Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees. International Journal of Advanced Structural Engineering (IJASE), 7, 117-127.
[8] Noh, N. M., Liberatore, L., Mollaioli, F., & Tesfamariam, S. (2017). Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. EngineeringStructures, 150, 599-621.
[9] Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills.
[10] El-Dakhakhni, W. W., Hamid, A. A., & Elgaaly, M. (2004, August). Strength and stiffness prediction of masonry infill panels. In 13th World Conference on Earthquake Engineering, Vancouver, BC Canada.
[11] Sattar, S., & Liel, A. B. (2016). Seismic performance of nonductile reinforced concrete frames with masonry infill walls—I: Development of a strut model enhanced by finite element
models. Earthquake Spectra, 32(2), 795-818.
[12] Burton, H., & Deierlein, G. (2014). Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills. Journal of Structural Engineering, 140(8), A4014016.
[13] T ÇAĞLAR, F. A., & TATAR, T. (2021). Fiber based modeling
strategies of RC columns. Academic Platform Journal of Natural
Hazards and Disaster Management, 2(2), 85-95.
[14] 陳明生. (1994). 紅磚、砂漿與其介面之基本力學性質研究.
[15] 張文德. (1997).磚牆及含磚牆 RC 構架之耐震試驗分析與運用
[16] 謝孟勳. (2002). 加強磚造構架耐震評估與補强之研究.
[17] Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental evaluation of masonry-infilled RC frames. Journal of Structural engineering, 122(3), 228-237.
[18] 林育瑄. (2016). RC 構架內含偏心開口不同構法磚牆面內側向
加載試驗.
[19] Stylianidis, K. C. (2012). Experimental investigation of masonry infilled R/C frames. The Open Construction & Building Technology Journal, 6(1).
[20] Cavaleri, L., & Di Trapani, F. (2014). Cyclic response of masonry infilled RC frames: Experimental results and simplified
modeling. Soil Dynamics and Earthquake Engineering, 65, 224-242.
[21] FEMA P-58. (2012). Federal Emergency Management Agency:
Seismic Performance Assessment of Buildings
[22] PEER-TBI Task7. (2010) Modeling and acceptance criteria for seismic design and analysis of tall buildings. PEER Report No. 2010/111, University ofCalifornia at Berkeley
[23] ACT-40. (1996). Seismic evaluation and retrofit of concrete buildings. Report No. SSC 96-01, Applied Technology Council
指導教授 陳鵬宇(Peng-Yu Chen) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明