參考文獻 |
參考文獻
Aceituno, P. (1992). El Niño, the Southern Oscillation, and ENSO: Confusing Names for a Complex Ocean–Atmosphere Interaction. Bulletin of the American Meteorological Society, 73(4), 483-485. http://www.jstor.org/stable/26228867
Andreoli, R. V., de Oliveira, S. S., Kayano, M. T., Viegas, J., de Souza, R. A. F., & Candido, L. A. (2017). The influence of different El Niño types on the South American rainfall. International Journal of Climatology, 37(3), 1374-1390.
Augustine, J. A., & Dutton, E. G. (2013). Variability of the surface radiation budget over the United States from 1996 through 2011 from high‐quality measurements. Journal of Geophysical Research: Atmospheres, 118(1), 43-53.
Barthel, R., & Banzhaf, S. (2016). Groundwater and surface water interaction at the regional-scale–a review with focus on regional integrated models. Water resources management, 30(1), 1-32.
Bastin, G., Lorent, B., Duque, C., & Gevers, M. J. W. R. R. (1984). Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. 20(4), 463-470.
Ben‐Gal, I. (2008). Bayesian networks. Encyclopedia of statistics in quality and reliability, 1.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Browne, M. W. (2000). Cross-validation methods. Journal of mathematical psychology, 44(1), 108-132.
Cane, M. A. (1986). El Niño. Annual Review of Earth and Planetary Sciences, 14(1), 43-70.
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Falcón, R. A., Julien, M., & Lavallée, D. (2014). Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. science, 345(6200), 1045-1048.
Chang, C. P., Lei, Y., Sui, C. H., Lin, X., & Ren, F. (2012). Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid‐20th century. Geophysical Research Letters, 39(18).
Chang, K.-T., & Chiang, S.-H. (2009). An integrated model for predicting rainfall-induced landslides. Geomorphology, 105(3-4), 366-373.
Chen, J.-M., Li, T., & Shih, C.-F. (2010). Tropical cyclone–and monsoon-induced rainfall variability in Taiwan. Journal of Climate, 23(15), 4107-4120.
Chen, J., Li, T., Nan, Q., Shi, X., Liu, Y., Jiang, B., Zou, J., Selvaraj, K., Li, D., & Li, C. (2019). Mid-late Holocene rainfall variation in Taiwan: A high-resolution multi-proxy record unravels the dual influence of the Asian monsoon and ENSO. Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 139-151. https://doi.org/https://doi.org/10.1016/j.palaeo.2018.11.026
Chen, X., Chen, Y. D., & Xu, C. y. (2007). A distributed monthly hydrological model for integrating spatial variations of basin topography and rainfall. Hydrological Processes: An International Journal, 21(2), 242-252.
Chen, X., Yin, L., Fan, Y., Song, L., Ji, T., Liu, Y., Tian, J., & Zheng, W. (2020). Temporal evolution characteristics of PM2. 5 concentration based on continuous wavelet transform. Science of the total environment, 699, 134244. https://doi.org/10.1016/j.scitotenv.2019.134244
Chirlin, G., & Dagan, G. J. W. R. R. (1980). Theoretical head variograms for steady flow in statistically homogeneous aquifers. 16(6), 1001-1015.
Chu, P.-S. (2004). ENSO and tropical cyclone activity. Hurricanes and typhoons: Past, present, and potential, 297, 332.
Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R. A., Koeckelenbergh, A., & Wauters, L. (2007). From the Wolf number to the International Sunspot Index: 25 years of SIDC. Advances in Space Research, 40(7), 919-928.
Cliver, E. W., Boriakoff, V., & Bounar, K. H. (1998). Geomagnetic activity and the solar wind during the Maunder Minimum. Geophysical Research Letters, 25(6), 897-900.
Cowling, T. G. (1933). The magnetic field of sunspots. Monthly Notices of the Royal Astronomical Society, 94, 39-48.
Cristiano, E., ten Veldhuis, M.-c., & Van De Giesen, N. (2017). Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas–a review. Hydrology and Earth System Sciences, 21(7), 3859-3878.
De Silva, M., & Kawasaki, A. (2018). Socioeconomic vulnerability to disaster risk: a case study of flood and drought impact in a rural Sri Lankan community. Ecological Economics, 152, 131-140.
EM-DAT, C. (2014). Centre for research on the epidemiology of disasters, EM Dat The international Disaster Database. In.
García‐García, D., & Ummenhofer, C. C. (2015). Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophysical Research Letters, 42(2), 526-535.
Gilmont, M., Hall, J. W., Grey, D., Dadson, S. J., Abele, S., & Simpson, M. (2018). Analysis of the relationship between rainfall and economic growth in Indian states. Global Environmental Change, 49, 56-72. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2018.01.003
Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. International Journal of Disaster Risk Science, 11(3), 394-403.
Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. https://hal.archives-ouvertes.fr/hal-00302394
Guetter, A. K., & Georgakakos, K. P. (1996). Are the El Niño and La Niña predictors of the Iowa River seasonal flow? Journal of Applied Meteorology and Climatology, 35(5), 690-705.
Haque, M. M., Rahman, A., & Samali, B. (2016). Evaluation of climate change impacts on rainwater harvesting. Journal of Cleaner Production, 137, 60-69.
Hatzes, A. P. (2002). Starspots and exoplanets. Astronomische Nachrichten, 323(3‐4), 392-394.
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine learning, 20, 197-243.
Howard, G., Calow, R., Macdonald, A., & Bartram, J. (2016). Climate change and water and sanitation: likely impacts and emerging trends for action. Annual review of environment and resources, 41, 253-276.
Hoyt, D. V., & Schatten, K. H. (1998). Group sunspot numbers: A new solar activity reconstruction. Solar physics, 179(1), 189-219.
Jasper, K., Gurtz, J., & Lang, H. (2002). Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. Journal of Hydrology, 267(1-2), 40-52.
Jiang, Z., Tai-Jen Chen, G., & Wu, M.-C. (2003). Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and non-ENSO years. Monthly Weather Review, 131(8), 1769-1782.
Kakad, B., Kumar, R., & Kakad, A. (2020). Randomness in sunspot number: A clue to predict solar cycle 25. Solar physics, 295(6), 1-17.
Kovats, R. S., Bouma, M. J., Hajat, S., Worrall, E., & Haines, A. (2003). El Niño and health. The Lancet, 362(9394), 1481-1489.
Lee, J. H., Yang, C.-Y., & Julien, P. Y. (2020). Taiwanese rainfall variability associated with large-scale climate phenomena. Advances in Water Resources, 135, 103462. https://doi.org/https://doi.org/10.1016/j.advwatres.2019.103462
Li, S., Liu, N., Tang, L., Zhang, F., Liu, J., & Liu, J. (2021). Mutation test and multiple-wavelet coherence of PM2. 5 concentration in Guiyang, China. Air Quality, Atmosphere Health, 14(7), 955-966. https://doi.org/10.1007/s11869-021-00994-z
Li, W., Gao, X., Hao, Z., & Sun, R. (2022). Using deep learning for precipitation forecasting based on spatio-temporal information: a case study. Climate Dynamics, 58(1-2), 443-457.
Linh, N. T. T., Ruigar, H., Golian, S., Bawoke, G. T., Gupta, V., Rahman, K. U., Sankaran, A., & Pham, Q. B. (2021). Flood prediction based on climatic signals using wavelet neural network. Acta Geophysica, 69(4), 1413-1426.
Liu, M., Huang, Y., Li, Z., Tong, B., Liu, Z., Sun, M., Jiang, F., & Zhang, H. (2020). The applicability of LSTM-KNN model for real-time flood forecasting in different climate zones in China. Water, 12(2), 440.
Marsh, N., & Svensmark, H. (2003). Solar Influence on Earth’S Climate. In A. C. L. Chian, I. H. Cairns, S. B. Gabriel, J. P. Goedbloed, T. Hada, M. Leubner, L. Nocera, R. Stening, F. Toffoletto, C. Uberoi, J. A. Valdivia, U. Villante, C. C. Wu, & Y. Yan (Eds.), Advances in Space Environment Research: Volume I (pp. 317-325). Springer Netherlands. https://doi.org/10.1007/978-94-007-1069-6_30
Mason, S. J., Waylen, P. R., Mimmack, G. M., Rajaratnam, B., & Harrison, J. M. (1999). Changes in Extreme Rainfall Events in South Africa. Climatic Change, 41(2), 249-257. https://doi.org/10.1023/A:1005450924499
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology,
McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. science, 314(5806), 1740-1745.
Moeletsi, M. E., Walker, S., & Landman, W. A. (2011). ENSO and implications on rainfall characteristics with reference to maize production in the Free State Province of South Africa. Physics and chemistry of the earth, parts A/B/C, 36(14-15), 715-726.
Moosavi, V., Mahjoobi, J., & Hayatzadeh, M. (2021). Combining group method of data handling with signal processing approaches to improve accuracy of groundwater level modeling. Natural Resources Research, 30, 1735-1754.
Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. (2013). A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water resources management, 27, 1301-1321.
MOST(Taiwan). (2021). Extracts of scientific key points from the IPCC Sixth Assessment Report on Climate Change and Update Report on Climate Change Review and Analysis in Taiwan (in Chinese). https://tccip.ncdr.nat.gov.tw/upload/data_document/20210810135326.pdf
Nazari-Sharabian, M., & Karakouzian, M. (2020). Relationship between sunspot numbers and mean annual precipitation: application of cross-wavelet transform—a case study. J, 3(1), 67-78.
New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements and trends in the twentieth century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(15), 1889-1922.
Nourani, V., Ghasemzade, M., Mehr, A. D., & Sharghi, E. (2019). Investigating the effect of hydroclimatological variables on Urmia Lake water level using wavelet coherence measure. Journal of Water and Climate Change, 10(1), 13-29.
Orlanski, I. (1975). A Rational Subdivision of Scales for Atmospheric Processes. Bulletin of the American Meteorological Society, 56(5), 527-530. http://www.jstor.org/stable/26216020
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Peng, T., Zhou, J., Zhang, C., & Fu, W. (2017). Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water, 9(6), 406.
Philander, G. (1989). El Niño and La Niña. American Scientist, 77(5), 451-459.
Philander, S. (1985). El Niño and La Niña. Journal of Atmospheric Sciences, 42(23), 2652-2662.
Pourret, O., Na, P., & Marcot, B. (2008). Bayesian networks: a practical guide to applications. John Wiley & Sons.
Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 1-16.
Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532-538.
Rish, I. (2001). An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligence,
Ropelewski, C. F., & Halpert, M. S. (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review, 114(12), 2352-2362.
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
Schove, D. J. (1955). The sunspot cycle, 649 BC to AD 2000. Journal of Geophysical Research, 60(2), 127-146.
Schove, D. J. (1983). Sunspot cycles. Stroudsburg.
Strassmeier, K. G. (2009). Starspots. The Astronomy and Astrophysics Review, 17(3), 251-308.
Su, B., Gemmer, M., & Jiang, T. (2008). Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quaternary International, 186(1), 22-31.
Su, L., Miao, C., Duan, Q., Lei, X., & Li, H. (2019). Multiple‐wavelet coherence of world′s large rivers with meteorological factors and ocean signals. Journal of Geophysical Research: Atmospheres, 124(9), 4932-4954.
Sun, X., Thyer, M., Renard, B., & Lang, M. (2014). A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on Southeast Queensland rainfall. Journal of Hydrology, 512, 53-68.
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771-2778.
United Nations World Water Assessment Programme. (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. United Nations Educational, Scientific and Cultural.
Vineis, P., Chan, Q., & Khan, A. (2011). Climate change impacts on water salinity and health. Journal of Epidemiology and Global Health, 1(1), 5-10.
Vitinskii, I. I., Kopetskii, M., & Kuklin, G. V. (1986). The statistics of sunspot-formation activity. Moscow Izdatel Nauka.
Wang, L., Yang, Z., Gu, X., & Li, J. (2020). Linkages Between Tropical Cyclones and Extreme Precipitation over China and the Role of ENSO. International Journal of Disaster Risk Science, 11(4), 538-553. https://doi.org/10.1007/s13753-020-00285-8
Wang, X., Hou, X., & Wang, Y. (2017). Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmospheric research, 197, 94-104.
Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z., & Li, J. (2017). Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of Hydrology, 544, 97-108.
Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. (2012). Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 25(4), 671-682.
Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical applications in genetics and molecular biology, 6(1).
Wolter, K., & Timlin, M. S. (1998). Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53(9), 315-324.
Yang, W. F. (2015). Find an opportunity to face the drought. (in Chinese). Journal of the Chinese Institute of Civil and Hydraulic Engineering, 42(4), 04-08.
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., & Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461(7263), 511-514.
Zhang, L., Lin, L., Liang, X., & He, K. (2016). Is faster R-CNN doing well for pedestrian detection? Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14,
Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399-458.
Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2021). Interviews with authors of Working Group I contribution to Sixth Assessment Report. |