博碩士論文 110323001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.117.184.144
姓名 黃彬晏(Bin-Yan Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 冷鏈系統之鋁基蓄冷材之腐蝕抑制研究
(On the corrosion and corrosion inhibition of the Al-storage vessel in the coolant used in cold chain)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之主旨在研究冷鏈技術中蓄冷劑對鋁蓄冷容器之腐蝕與防蝕。15 wt% 氯化鈉水溶液為常用之蓄冷劑,鋁箔(厚度7 μm)因屬於價廉且具有良好熱傳之材料,常作為蓄冷袋容器。由於氯鹽類溶液對鋁金屬腐蝕性極為強烈,一旦鋁蓄冷袋遭受腐蝕之破壞,將造成蓄冷失效及系統污染之災情與經濟損失。為防止此腐蝕現象發生,必須對蓄冷系統進行防腐蝕處理。本案之防蝕策略採用腐蝕抑制劑防腐蝕法,將蓄冷容器中取出之純鋁箔試片,分別浸泡在單純之-30、-20、0、20、40和60 °C 15 wt% 氯化鈉溶液蓄冷劑中,與添加10-6M 、10-5M、10-4M、10-3M濃度之1,2,3-苯駢三氮唑(benzotriazole BZ)、色胺酸(tryptophan, TR) 、香草精(vanillin, VL)三種綠色腐蝕抑制劑之蓄冷劑於溶液中進行腐蝕測試,試片於浸泡3、5、7、14 和21天後,取出試片,接下來將試片表面除去表面腐蝕生成物後,可以求出重量損失,計算出其抑制劑BZ+TR之抑制效率為最好(97.20%),再以電化學加速實驗測進行再次驗證,首先測試開路電位量測其腐蝕電位,線性極化量、交流阻抗、塔弗極化法測得到BZ+TR其腐蝕抑制效率在電化學之抑制效率分析中為系統中最好之抑制劑(圖5- 1),而與等效電路得到其腐蝕抑制方式,陽極動態循環極化法得到腐蝕抑制劑對孔蝕之敏感程度,其中添加BZ+TR之孔蝕電位相較其他抑制劑來的高,在以熱力學吸附理論得出其抑制劑吸附方式,其討論之抑制劑均為混合性吸附(物理性吸附+化學性吸附),以X射線光電子能譜的分析進一步確認其鍵結方式,由N 1s中Al-N這個鍵結確認抑制劑與試片進行化學性吸附。
摘要(英) Theain purpose of this research is to study the corrosion and anti-corrosion of the cold storage agent to the aluminum cold storage container in the cold chain technology. 15 wt% sodium chloride solution is a common cold storage agent, and aluminum foil (thickness 7μm) is often used as a cold storage bag container because it is a cheap and good heat transferaterial. Because the chloride salt solution is extremely corrosive to aluminumetal, once the aluminum cold storage bag is damaged by corrosion, it will cause cold storage failure and system pollution disasters and economic losses. In order to prevent this corrosion phenomenon, the cold storage systemust be protected from corrosion. The anti-corrosion strategy in this case adopts the anti-corrosionethod of corrosion inhibitor. The aluminum foil test pieces are immersed in pure-30、 -20, 0, 20, 40 and 60 °C 15 wt% sodium chloride solution cooling agent respectively, and 10-6M, 10-5M, 10-3M concentration of benzotriazole (BZ); tryptophan (TR); vanillin (VL) three kinds of green corrosion inhibitor cold storage agent for corrosion test, the test piece is soaked for 3, 5, 7, 14 and 21 days, take out the test piece, remove the surface After the corrosion product, the weight loss can be calculated, and the pitting depth of the surface can be observed, and theneasured by the open circuit potentialeasurement and the Tarver polarizationethod to evaluate the corrosion rate of the cool storage agent to the test piece, and the anode dynamic cycle polarizationethod can be obtained. The inhibition efficiency of corrosion inhibitors on pitting corrosion was investigated. Finally, electrochemical impedance spectroscopy was used to understand the corrosionechanism and corrosion inhibitionechanism of aluminum foil test pieces.
關鍵字(中) ★ 冷鏈
★ 腐蝕
★ 腐蝕抑制劑
★ 孔蝕
★ 陽極動態循環極化
★ 抑制效率
關鍵字(英) ★ Cold Chain
★ Corrosion
★ Corrosion Inhibitors
★ Pitting Corrosion
★ Anode Dynamic Cyclic Polarization
★ Inhibition Efficiency
論文目次 摘要 i
Abstract ii
目錄 iv
第一章 緒論 1
1-1前言 1
1-2 腐蝕抑制劑簡介 2
1-3 研究方向與實驗架構 3
第二章 理論背景與文獻回顧 5
2-1 鋁的基本物理化學特性 5
2-2 腐蝕抑制劑之特性與分類 6
2-2-1 腐蝕行為與防蝕 6
2-2-2 腐蝕抑制劑抑制方式與選擇 8
2-2-3 腐蝕抑制劑之分類 9
2-3 抑制劑吸附理論與活化能 14
2-3-1 抑制劑吸附理論 14
2-3-2 活化能與自由能 15
2-4 電化學測試法之原理與相關理論 16
2-4-1 開路電位(Open circuit potential) 16
2-4-2 線性極化(Linear polarization) 16
2-4-3 交流阻抗頻譜法(Electrochemical Impedance Spectroscopy) 16
2-4-4 等效電路圖及模擬 18
2-4-5 動態極化(Potentiodynamic polarization)之Tafel掃描 19
2-4-6 動態極化之陽極循環極化(Cyclic Potentiodynamic Polarization) 20
2-4-6 Nernst Equation與電位-pH圖(Potential-pH Diagram) 21
第三章 實驗方法及步驟 24
3-1 試片選擇與規格 24
3-2 試片製作與溶液配製 24
3-3 腐蝕抑制劑選用 25
3-4 重量損失法實驗 26
3-5 電化學實驗 26
3-5-1 開路電位之腐蝕電位量測 27
3-5-2 線性極化測試 27
3-5-3 交流阻抗測試 28
3-5-4 Tafel極化測試 28
3-5-5 陽極循環極化測試 29
3-6 抑製劑之活化能、自由能與吸附關係 30
3-7 表面分析儀器 31
3-7-1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electronicroscope,FESEM) 31
3-7-2 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy,XPS) 31
第四章 實驗結果 32
4-1腐蝕抑制劑對蓄冷劑之抑制效率測試 32
4-1-1 重量損失法 32
4-1-2 線性極化法 33
4-1-3 交流阻抗頻譜分析(EIS) 與等效電路模擬 34
4-1-4 Tafel極化法 35
4-1-5 陽極循環極化測試 37
4-2 蓄冷劑中腐蝕抑制劑安定性分析 39
4-2-1 腐蝕抑制劑之濃度效應 39
4-2-2 溫度所造成之影響 39
4-2-3 腐蝕抑制劑對上時間效應 40
4-2-4 活化能與吸附型態 41
4-3 表面分析 43
4-3-1 SEM表面分析 43
4-3-4 XPS表面分析 44
4-4 腐蝕溶液分析 45
4-4-1 酸鹼度分析 45
第五章 討論 46
5-1 腐蝕抑制劑對蓄冷劑之抑制效率討論 46
5-2 腐蝕抑制劑安定性討論 47
5-2-1 氯化鈉影響 47
5-2-2 腐蝕抑制劑之濃度影響 48
5-2-3腐蝕抑制劑對上時間影響 48
5-2-4 溫度影響 49
5-3 表面分析 50
5-3-1 表面形貌分析討論 50
5-3-2 XPS分析討論 50
第六章 結論與未來展望 52
參考文獻 53
參考文獻 1. Gupta, V.K., Chaudhuri, A., and Tiwari, M.K., “Modeling for deployment of digital technologies in the cold chain”, IFAC-PapersOnLine. 52(13), p. 1192-1197, 2019
2. Research, G.V., "Cold Chain Market Size, Share & Trends Analysis Report By Type (Storage, Transportation, Monitoring Components), By Packaging, By Equipment, By Application, Regional Outlook, Competitive Strategies, And Segment Forecasts, 2023 - 2030". 2023.
3. Hosseini Bamakan, S.M., Ghasemzadeh Moghaddam, S., and Dehghan Manshadi, S., “Blockchain-enabled pharmaceutical cold chain: Applications, key challenges, and future trends”, Journal of Cleaner Production. 302, p. 127021, 2021
4. Wang, N., Wang, Y., Bai, L., Liao, X., Liu, D., and Ding, T., “Advances in strategies to assure the microbial safety of food-associated ice”, Journal of Future Foods. 3(2), p. 115-126, 2023
5. 曾文雄, "氯離子濃度對線西污水廠生物系統微生物之干擾研究". 2018, 南華大學: 臺灣博碩士論文知識加值系統.
6. Braithwaite, L., Albrechtas, K., Zagidulin, D., Behazin, M., Shoesmith, D., and Noël, J.J., “Galvanic Coupling of Copper and Carbon Steel in the Presence of Bentonite Clay and Chloride”, Journal of The Electrochemical Society. 169(5), p. 051502, 2022
7. Xhanari, K., Wang, Y., Yang, Z., and Finšgar, M., “A review of recent advances in the inhibition of sweet corrosion”, The Chemical Record. 21(7), p. 1845-1875, 2021
8. Bhati, K., Tripathy, D.B., and Gupta, A. Acridine as Bioinspired Corrosion Inhibitors. Macromolecular Symposia. Wiley Online Library.2023
9. Liu, J., Wang, D., Gao, L., and Zhang, D., “Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution”, Applied Surface Science. 389, p. 369-377, 2016
10. Xhanari, K. and Finšgar, M., “Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: a review”, Arabian Journal of Chemistry. 12(8), p. 4646-4663, 2019
11. Li, X., Xiang, B., Zuo, X.-l., Wang, Q., and Wei, Z.-d., “Inhibition of tryptophan on AA 2024 in chloride-containing solutions”, Journal of materials engineering and performance. 20(2), p. 265-270, 2011
12. Zhou, B., Wang, Y., and Zuo, Y., “Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors”, Applied Surface Science. 357, p. 735-744, 2015
13. Umoren, S.A., Solomon, M.M., Obot, I.B., and Suleiman, R.K., “A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals”, Journal of Industrial and Engineering Chemistry. 76, p. 91-115, 2019
14. 林景崎, 張志雄, 鄧子平, 李健平, and 李勝隆, “鋁在酸性溶液中孔蝕行為研究”, 防蝕工程. 18(3), p. 249-258, 2004
15. Zotov, R., Meshcheryakov, E., Livanova, A., Minakova, T., Magaev, O., Isupova, L., and Kurzina, I., “Influence of the composition, structure, and physical and chemical properties of aluminium-oxide-based sorbents on water adsorption ability”, Materials. 11(1), p. 132, 2018
16. Srivastava, A. and Meshram, A., “On trending technologies of aluminium dross recycling: A Review”, Process Safety and Environmental Protection, 2023
17. Marot, L., Linsmeier, C., Eren, B., Moser, L., Steiner, R., and Meyer, E., “Can aluminium or magnesium be a surrogate for beryllium: A critical investigation of their chemistry”, Fusion engineering and design. 88(9-10), p. 1718-1721, 2013
18. Downs, A.J.,Chemistry of aluminium, gallium, indium and thallium, Springer Science & Business Media,1993.
19. Chen, J., He, Z., Liu, J., Wang, Y., Hodgson, M., and Gao, W., “Antibacterial anodic aluminium oxide-copper coatings on aluminium alloys: Preparation and long-term antibacterial performance”, Chemical Engineering Journal. 461, p. 141873, 2023
20. Zehra, S., Mobin, M., and Aslam, R., ”Corrosion prevention and protection methods”, Eco-Friendly Corrosion Inhibitors. 2022, Elsevier. p. 13-26.
21. Vit, Z., Vala, J., and Malek, J., “Acid-base properties of aluminium oxide”, Applied Catalysis. 7(2), p. 159-168, 1983
22. Kaya, Ş. and Sarıbıyık, O.Y., “The effect of the surface morphology of the aluminium oxide layer on the physical and bacterial attachment behavior”, Surface Topography: Metrology and Properties. 11(1), p. 015018, 2023
23. Shaw, B. and Kelly, R., “What is corrosion?”, The Electrochemical Society Interface. 15(1), p. 24, 2006
24. Baboian, R.,Corrosion tests and standards: application and interpretation,Vol. 20. ASTM international,2005.
25. Shit, G., Mariappan, K., and Ningshen, S., “Improvement of Sensitization and Intergranular Corrosion of AISI type 304L Stainless Steel Through Thermo-mechanical Treatment”, Corrosion Science, p. 110975, 2023
26. Wang, C., Xiong, X., Yang, L., Hong, Y., She, S., Zhang, H., Liu, H., Ji, V., and Li, M., “Erosion-corrosion behaviour of shot peening treated nickel-aluminium bronze in simulated sand-containing seawater”, Corrosion Science. 211, p. 110908, 2023
27. Zhou, H., Zhang, Y., Ma, H., Lei, Y., Yang, Z., Zhao, H., Gao, Y., and Zhu, K., “Inhibition of the erosion-corrosion of elbow by synergistic action of swirling flow and inhibitor”, Wear. 514, p. 204570, 2023
28. Ma, Y., Dong, H., Li, P., Wu, B., Huang, L., Zhang, L., Li, C., and Li, J., “Galvanic corrosion of AA5052/304SS welded joint with Zn-based filler metal in marine engineering”, Corrosion Science. 211, p. 110912, 2023
29. Peng, Y., Huang, B., Zhong, Y., Su, C., Tao, Z., Rong, X., Li, Z., and Tang, H., “Electrochemical corrosion behavior of 6061 Al alloy under high rotating speed submerged friction stir processing”, Corrosion Science. 215, p. 111029, 2023
30. 張天勝,緩蝕劑, 化學工業出版社, 北京,2001.
31. 柯賢文,腐蝕及其防制, 全華科技圖書公司, 新北市,1994.
32. Ma, I.W., Ammar, S., Kumar, S.S., Ramesh, K., and Ramesh, S., “A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies”, Journal of Coatings Technology and Research, p. 1-28, 2022
33. Liu, Q., Liu, J., Wang, J., and Chong, Y., “Corrosion inhibition effect of betaine type quaternary ammonium salt on AA2024-T3 in 0.01 mol· L− 1 NaOH: Experimental and theoretical research”, Journal of Molecular Structure. 1274, p. 134395, 2023
34. Akiyama, E., Markworth, A., McCoy, J., Frankel, G., Xia, L., and McCreery, R., “Storage and release of soluble hexavalent chromium from chromate conversion coatings on Al alloys: kinetics of release”, Journal of the Electrochemical Society. 150(2), p. B83, 2003
35. Von Baeckmann, W., Schwenk, W., and Prinz, W.,Handbook of cathodic corrosion protection, Elsevier,1997.
36. HosseinpourRokni, M., Naderi, R., Soleimani, M., Kowsari, E., and Pourfath, M., “Indirect interactions between the ionic liquid and Cu surface in 0.5 M HCl: a novel mechanism explaining cathodic corrosion inhibition”, Corrosion Science. 216, p. 111100, 2023
37. 陳奕哲, “無電鍍鎳表面處理對 7075-T6 鋁合金 沖蝕磨耗及機械性質之影響”, 2004
38. 賴文啟, "鎂鋁合金錫酸鹽皮膜化成處理之研究". 2003, 逢甲大學材料科學研究所碩士論文.
39. Wang, X., Chen, L., Yang, F., Xiang, Q., and Liu, J., “Corrosion inhibition mechanism and extraction technology of plant corrosion inhibitors: a review”, Journal of Adhesion Science and Technology, p. 1-25, 2023
40. Alimohammadi, M., Ghaderi, M., Ramazani SA, A., and Mahdavian, M., “Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media”, Scientific Reports. 13(1), p. 3737, 2023
41. Gebert, A., Gostin, P., and Schultz, L., “Effect of surface finishing of a Zr-based bulk metallic glass on its corrosion behaviour”, Corrosion science. 52(5), p. 1711-1720, 2010
42. Tian, Y., Zhang, G., Ye, H., Zeng, Q., Zhang, Z., Tian, Z., Jin, X., Jin, N., Chen, Z., and Wang, J., “Corrosion of steel rebar in concrete induced by chloride ions under natural environments”, Construction and Building Materials. 369, p. 130504, 2023
43. Ma, P., Fan, L., and Chen, G., “Hyperspectral reflectance for determination of steel rebar corrosion and Cl− concentration”, Construction and Building Materials. 368, p. 130506, 2023
44. Qu, L., Song, W., Wang, Q., Xu, S., and Hou, C., “Effects of hydrophobic modified fly ash on resistance of chloride corrosion and water penetration of cement mortar in the early hydration stage”, Journal of Building Engineering. 64, p. 105573, 2023
45. Zomorodian, A. and Behnood, A., “Review of Corrosion Inhibitors in Reinforced Concrete: Conventional and Green Materials”, Buildings. 13(5), p. 1170, 2023
46. Guo, L., Huang, Y., Wu, Y., Shi, W., Abbas, F., Lin, Y., Marzouki, R., and Zheng, X., “Experimental and Theoretical Studies of the Corrosion Inhibition Performance of a Quaternary Phosphonium-Based Ionic Liquid for Mild Steel in HCl Medium”, Sustainability. 15(4), p. 3103, 2023
47. Anandkumar, B., Krishna, N.G., Solomon, R.V., Nandakumar, T., and Philip, J., “Synergistic enhancement of corrosion protection of carbon steels using corrosion inhibitors and biocides: Molecular adsorption studies, DFT calculations and long-term corrosion performance evaluation”, Journal of Environmental Chemical Engineering. 11(3), p. 109842, 2023
48. Peme, T., Olasunkanmi, L.O., Bahadur, I., Adekunle, A.S., Kabanda, M.M., and Ebenso, E.E., “Adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions”, Molecules. 20(9), p. 16004-16029, 2015
49. Fouda, A., Azeem, M.A., Mohamed, S., El-Hossiany, A., and El-Desouky, E., “Corrosion inhibition and adsorption behavior of nerium oleander extract on carbon steel in hydrochloric acid solution”, Int. J. Electrochem. Sci. 14, p. 3932-3948, 2019
50. Anadebe, V.C., Chukwuike, V.I., Chidiebere, M.A., and Barik, R.C., “Synthesis, Characterization, and Evaluation of Co-MOF Based ZIF-67 for CO2 Corrosion Inhibition of X65 Steel: Insights from Electrochemical Studies and a Machine Learning Algorithm”, The Journal of Physical Chemistry C, 2023
51. Levin, M., Wiklund, P., and Leygraf, C., “Bioorganic compounds as copper corrosion inhibitors in hydrocarbon media”, Corrosion science. 58, p. 104-114, 2012
52. Dmytrenko, V., Vynnykov, Y., and Zezekalо, I. Selection of effective corrosion inhibitors for bischofite solutions and simulated medium of formation waters. E3S Web of Conferences. EDP Sciences.2020
53. Lamaka, S.V., Zheludkevich, M.L., Yasakau, K., Montemor, M., and Ferreira, M.G., “High effective organic corrosion inhibitors for 2024 aluminium alloy”, Electrochimica Acta. 52(25), p. 7231-7247, 2007
54. Forsyth, M., Seter, M., Hinton, B., Deacon, G., and Junk, P., “New ‘green’corrosion inhibitors based on rare earth compounds”, Australian journal of chemistry. 64(6), p. 812-819, 2011
55. Zehra, S., Mobin, M., and Aslam, R., ”Corrosion inhibitors: An introduction”, Environmentally Sustainable Corrosion Inhibitors. 2022, Elsevier. p. 47-67.
56. Verma, C., Quraishi, M., and Rhee, K.Y., “Aqueous phase polymeric corrosion inhibitors: Recent advancements and future opportunities”, Journal of Molecular Liquids. 348, p. 118387, 2022
57. Vorobyova, V., Sikorsky, O., Skiba, M., and Vasyliev, G., “Quebracho tannin as corrosion inhibitor in neutral media and novel rust conversion agent for enhanced corrosion protection”, South African Journal of Chemical Engineering, 2023
58. Stewart, M.G., Wang, X., and Nguyen, M.N., “Climate change adaptation for corrosion control of concrete infrastructure”, Structural Safety. 35, p. 29-39, 2012
59. Wranglén, G., “An introduction to corrosion and protection of metals”, Anti-corrosion methods and materials. 19(11), p. 5-5, 1972
60. Bastidas, D.M., Cano, E., and Mora, E., “Volatile corrosion inhibitors: a review”, Anti-Corrosion Methods and Materials. 52(2), p. 71-77, 2005
61. Gece, G., “Drugs: A review of promising novel corrosion inhibitors”, Corrosion Science. 53(12), p. 3873-3898, 2011
62. Wang, Q., Wang, R., Zhang, Q., Zhao, C., Zhou, X., Zheng, H., Zhang, R., Sun, Y., and Yan, Z., “Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review”, Molecules. 28(6), p. 2832, 2023
63. Zhang, Y., Liu, B., Chen, S., and Xu, K., “A new idea for industrial safety in magnesium grinding: Suppression of hydrogen generation in wet dust collectors”, International Journal of Hydrogen Energy. 47(46), p. 20333-20346, 2022
64. Umoren, S.A., Abdullahi, M.T., and Solomon, M.M., “An overview on the use of corrosion inhibitors for the corrosion control of Mg and its alloys in diverse media”, Journal of Materials Research and Technology, 2022
65. Abdel-Karim, A.M. and El-Shamy, A.M., “A review on green corrosion inhibitors for protection of archeological metal artifacts”, Journal of Bio-and Tribo-Corrosion. 8(2), p. 35, 2022
66. Hossain, N., Islam, M.A., and Chowdhury, M.A., “Advances of Plant-Extracted Inhibitors in Metal Corrosion Reduction–Future Prospects and Challenges”, Results in Chemistry, p. 100883, 2023
67. Edraki, M., Sheydaei, M., and Zaarei, D., “A brief review of the performance of azole-type organic corrosion inhibitors”,
68. Mobin, M., Parveen, M., and Khan, M.A., “Inhibition of mild steel corrosion in HCl solution using amino acid L-tryptophan”, Recent Research in Science and Technology. 3(12), p. 40-45, 2011
69. Abbas, M.A., Arafa, E., Gad, E.S., Bedair, M.A., El-Azabawy, O.E., and Al-Shafey, H.I., “Performance assessment by experimental and Theoretical approaches of newly synthetized benzyl amide derivatives as corrosion inhibitors for carbon steel in 1.0 M hydrochloric acid environment”, Inorganic Chemistry Communications, p. 109758, 2022
70. Alahiane, M., Oukhrib, R., Albrimi, Y.A., Abou Oualid, H., Idouhli, R., Nahlé, A., Berisha, A., Azzallou, N.Z., and Hamdani, M., “Corrosion inhibition of SS 316L by organic compounds: Experimental, molecular dynamics, and conceptualization of molecules–surface bonding in H2SO4 solution”, Applied Surface Science. 612, p. 155755, 2023
71. Vaszilcsin, C.G., Putz, M.V., Kellenberger, A., and Dan, M.L., “On the evaluation of metal-corrosion inhibitor interactions by adsorption isotherms”, Journal of Molecular Structure. 1286, p. 135643, 2023
72. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., and Patil, S., “Surfactant adsorption isotherms: A review”, ACS omega. 6(48), p. 32342-32348, 2021
73. Paria, S. and Khilar, K.C., “A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface”, Advances in colloid and interface science. 110(3), p. 75-95, 2004
74. Abdallah, M., Hegazy, M., Alfakeer, M., and Ahmed, H., “Adsorption and inhibition performance of the novel cationic Gemini surfactant as a safe corrosion inhibitor for carbon steel in hydrochloric acid”, Green Chemistry Letters and Reviews. 11(4), p. 457-468, 2018
75. Javadian, S., Yousefi, A., and Neshati, J., “Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl”, Applied Surface Science. 285, p. 674-681, 2013
76. Qiu, L.-G., Wu, Y., Wang, Y.-M., and Jiang, X., “Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid”, Corrosion Science. 50(2), p. 576-582, 2008
77. Djama, M., Benhaddad, L., Idir, B., Achoui, N., and Daifallah, H., “Synergistic corrosion inhibition effect of copolymer and an amphoteric surfactant on carbon steel in 3.5 NaCl solution: experimental and theoretical research”, Journal of Solid State Electrochemistry, p. 1-24, 2023
78. Yang, B., Wang, D., Sun, X., Chen, S., and Yu, B., “Electrochemical modeling in a building blocks’ way”, Chemical Engineering Journal. 454, p. 140419, 2023
79. Li, S., Ma, J., Xu, F., Wei, L., and He, D., “Fundamental principles and environmental applications of electrochemical hydrogen peroxide production: A review”, Chemical Engineering Journal. 452, p. 139371, 2023
80. Martínez-Huitle, C.A., Rodrigo, M.A., Sirés, I., and Scialdone, O., “A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water”, Applied Catalysis B: Environmental. 328, p. 122430, 2023
81. Hu, W., Peng, Y., Wei, Y., and Yang, Y., “Application of Electrochemical Impedance Spectroscopy to Degradation and Aging Research of Lithium-Ion Batteries”, The Journal of Physical Chemistry C. 127(9), p. 4465-4495, 2023
82. Morari, C., Buimaga-Iarinca, L., and Turcu, R.V.F., “On the contribution of phonons to electrochemical potential of Li-ion metal-organic frameworks”, Electrochimica Acta. 439, p. 141734, 2023
83. G01.11, S., "Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys". 2020, ASTM International.
84. G01.11, S., "Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements". 2021, ASTM International.
85. G01.11, S., "Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements". 2023, ASTM International.
86. G01.11, S., "Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys". 2018, ASTM International.
87. Bianchi, G. and Longhi, P., “Copper in sea-water, potential-pH diagrams”, Corrosion Science. 13(11), p. 853-864, 1973
88. Li, J.-H., Fan, C.-X., Huang, L., and Wang, Z.-Y., “An improved extracellular ion fluxes measurement system based on Nernst-Planck equation”, Measurement. 216, p. 112972, 2023
89. Mysliu, E., Sletteberg Storli, K., Kjørsvik, E., Lunder, O., and Erbe, A., “Recycled Aluminium Alloys and their Models: Role and Behaviour of Alloying Elements during Alkaline Etching”, Journal of The Electrochemical Society, 2023
90. Li, X., Caes, S., Pardoen, T., De Schutter, G., Hauffman, T., and Kursten, B., “Inhibition Effect of Lithium Salts on the Corrosion of Aa1100 Aluminium Alloy in Ordinary Portland Cement Pastes”, Available at SSRN 4387156,
91. Ma, G., Zhou, J., Wang, Q., Li, S., and Wang, C., “A research on the removal of radioactive pollutants from metal surface by means of Ce (IV)/HNO3 decontamination technology”, Journal of Radioanalytical and Nuclear Chemistry, p. 1-9, 2023
92. Pesterfield, L.L., Maddox, J.B., Crocker, M.S., and Schweitzer, G.K., “Pourbaix (E–pH-M) diagrams in three dimensions”, Journal of Chemical Education. 89(7), p. 891-899, 2012
93. Silverman, D.C. and Silverman, A.L. Potential-pH (Pourbaix) Diagrams as Aids for Screening Corrosion Inhibitors and Sequestering Agents. CORROSION 2007. OnePetro.2007
94. Hrimla, M., Bahsis, L., Laamari, M.R., Julve, M., and Stiriba, S.E., “An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces”, Int J Mol Sci. 23(1), 2021
95. Fu, J.-J., Li, S.-N., Cao, L.-H., Wang, Y., Yan, L.-H., and Lu, L.-D., “l-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution”, Journal of Materials Science. 45(4), p. 979-986, 2010
96. Satpati, S., Saha, S.K., Suhasaria, A., Banerjee, P., and Sukul, D., “Adsorption and anti-corrosion characteristics of vanillin Schiff bases on mild steel in 1 M HCl: experimental and theoretical study”, RSC Adv. 10(16), p. 9258-9273, 2020
97. Mohamed, A., Cahoon, J., and Caley, W., “Anodic polarization behavior of Nickel-based alloys in neutral and very acidic solutions”, Corrosion Science and Engineering. 15(37), p. 1, 2012
98. Subbiah, K., Lee, H.-S., Al-Hadeethi, M.R., Park, T., and Lgaz, H., “Assessment of the inhibitive performance of a hydrazone derivative for steel rebar in a simulated concrete medium: Establishing the inhibition mechanism at an experimental and theoretical level”, Chemical Engineering Journal. 458, p. 141347, 2023
99. Shojazadeh, T., Zolghadr, L., JafarKhani, S., Gharaghani, S., Farasat, A., Piri, H., and Gheibi, N., “Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme”, Journal of Biomolecular Structure and Dynamics. 41(4), p. 1378-1387, 2023
100. Feng, A., Zu, Y., Liu, P., Han, F., and An, M., “Electrochemical and Surface Analysis Investigation of Corrosion Inhibition Performance of 6-Thioguanine, Benzotriazole, and Phosphate Salt on Simulated Patinas of Bronze Relics”,
101. Raviprabha, K., Bhat, R.S., Bhat, S.I., Nagaraj, P., and Jyothi, K., “Corrosion inhibition study of 6061 aluminium alloy in the presence of ethyl 5-methyl-1-(4-nitrophenyl)-1H-1, 2, 3-triazole-4-carboxylate (NTE) in hydrochloric acid”, Heliyon. 9(5), 2023
102. Iorhuna, F., Thomas, N.A., and Lawal, S.M., “A Theoretical properties of Thiazepine and its derivatives on inhibition of Aluminium Al (110) surface”, Algerian Journal of Engineering and Technology. 8(1), p. 43-51, 2023
103. Almeraya-Calderón, F. and Chacon-Nava, J., "Corrosion and Protection in Aeronautical Alloys". 2023, MDPI. p. 1077.
104. 呂一平, "自來水金屬管線外部腐蝕及防蝕方法之研究". 2009, 國立臺灣海洋大學: 臺灣博碩士論文知識加值系統.
105. P.C. Okafor, X.L., Y.G. Zheng, “Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution”, Corrosion Science. Vol.51, p. pp.761–768, 2009
106. Benhiba, F., Serrar, H., Hsissou, R., Guenbour, A., Bellaouchou, A., Tabyaoui, M., Boukhris, S., Oudda, H., Warad, I., and Zarrouk, A., “Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: Chemical, electrochemical, surface and theoretical studies”, Chemical Physics Letters. 743, p. 137181, 2020
107. Bouklah, M., Hammouti, B., Lagrenée, M., and Bentiss, F., “Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium”, Corrosion Science. 48(9), p. 2831-2842, 2006
108. Lebrini, M., Suedile, F., Salvin, P., Roos, C., Zarrouk, A., Jama, C., and Bentiss, F., “Bagassa guianensis ethanol extract used as sustainable eco-friendly inhibitor for zinc corrosion in 3% NaCl: Electrochemical and XPS studies”, Surfaces and Interfaces. 20, p. 100588, 2020
109. Finšgar, M., “EQCM and XPS analysis of 1,2,4-triazole and 3-amino-1,2,4-triazole as copper corrosion inhibitors in chloride solution”, Corrosion Science. 77, p. 350-359, 2013
110. Gan, P., Zhang, D., Gao, L., Xin, Z., and Li, X., “Inhibitive effect of anionic/zwitterionic hybrid surfactants on the self-corrosion of anode for alkaline Al-air battery”, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 670, p. 131530, 2023
111. Sabet Bokati, K. and Dehghanian, C., “Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater”, Journal of Environmental Chemical Engineering. 6(2), p. 1613-1624, 2018
112. Finšgar, M. and Merl, D.K., “2-Mercaptobenzoxazole as a copper corrosion inhibitor in chloride solution: Electrochemistry, 3D-profilometry, and XPS surface analysis”, Corrosion Science. 80, p. 82-95, 2014
113. Nadi, I., Bouanis, M., Nohair, K., Nyassi, A., Zarrouk, A., Jama, C., and Bentiss, F., “Elaboration and corrosion resistance of self-assembled 2, 5-bis (4-pyridyl)-1, 3, 4-oxadiazole film on carbon steel: Surface characterisations, electrochemical assessments and surface pre-treatment effect”, Materials Today Communications, p. 106382, 2023
指導教授 林景崎(Jing-Chie Lin) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明