博碩士論文 110323004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.139.72.148
姓名 洪偉慈(Wei-Tsz Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以高壓輔助熱退火製備高開關比之自供電全無機鈣鈦礦光電感測器
(High-On-Off Ratio Self-Powered All-Inorganic Perovskite Photodetectors Fabricated By High-Pressure Assisted Thermal Annealing)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 快速熱退火之石墨烯特性分析★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 光電感測器是將入射光能量轉換為電訊號的光電元件。其具有許多重要的應用,包括成像、光通訊、遠程控制、化學/生物傳感等。目前以GaN、Si 和 InGaAs 光電感測器為主要之商用產品材料。
近年來鈣鈦礦此新型材料對於光電元件的研究興起,因其具有優異的光吸收特性,並且具有較高載子遷移率、光吸收係數大的優勢,另外鈣鈦礦的可調能隙特性,有極大的潛力成為一種的新式的寬能隙之光感測元件。其中全無機鈣鈦礦無論其性能以及耐候性明顯優於有機-無機混合鈣鈦礦,因此使用全無機鈣鈦礦製備光電感測器。
本研究選擇全無機鈣鈦礦材料CsPbBr3,並以熱蒸鍍方式製備主動層,不僅薄膜緻密度高,且平整性高。再以高壓輔助熱退火的方式對主動層進行品質改善,更減少了其薄膜缺陷,且晶界更少。並且在元件中加入了TiO2作為電子傳輸層,更能使電荷提取效率增高。經研究發現,其開關比(on/off ratio) 達到了"1.42×" 〖"10" 〗^"4" ,且1.02 V的高開路電壓可以作為自供電光電感測器。並且在一般辦公室環境下(照度420 lux)的on/off ratio 仍有一定程度的響應效果。此有望成為低成本、高性能光電感測器元件,後續若將此元件配合電流放大等電路設計,相信能有利於日常生活中的光感測應用發展。
摘要(英) Photodetectors are optoelectronic devices that convert incident light energy into electrical signals. It has many important applications, including imaging, optical communication, remote control, chemical/biological sensing, etc. At present, GaN, Si and InGaAs photodetectors are the main commercial product materials.
In recent years, the research of perovskite, a new material for optoelectronic devices, has been on the rise because of its excellent light absorption characteristics, high carrier mobility, and large light absorption coefficient. In addition, the adjustable energy gap characteristics has great potential to become a new type of wide-bandgap light sensing element. Among them, all-inorganic perovskite is obviously superior to organic-inorganic hybrid perovskite regardless of its performance and weather resistance, so all-inorganic perovskite is used to prepare photodetectors.
In this study, the all-inorganic perovskite material CsPbBr3 was selected, and the active layer was prepared by thermal evaporation, which not only has high film density, but also has high flatness. The quality of the active layer is improved by high-pressure assisted thermal annealing, which reduces the film defects and has fewer grain boundaries. In addition, TiO2 is added as an electron transport layer, which can further increase the charge extraction efficiency. After research, it is found that its on/off ratio reaches 1.42×104, and its high open circuit voltage of 1.02 V can be used as a self-powered photodetector. And in the general office environment (illuminance 420 lux), the on/off ratio still has a certain degree of response effect. This is expected to become a low-cost, high-performance photodetector device. If this component is combined with current amplification and other circuit designs in the future, it is believed to be beneficial to the development of light sensing applications in daily life.
關鍵字(中) ★ 鈣鈦礦
★ 光電感測器
關鍵字(英) ★ CsPbBr3
論文目次 摘要 i
Abstract ii
誌謝 iii
第一章 緒論 1
1-1 前言 1
1-2 光電感測器分類介紹 2
1-2-1 光電導體(Photoconductor) 2
1-2-2 光電晶體(Phototransistor) 2
1-2-3 光電二極體 (Photodiode) 3
1-3 鈣鈦礦光電感測器(Perovskite Photodetector, PPD) 4
1-3-1 有機-無機混合鈣鈦礦光電感測器 5
1-3-2 全無機混合鈣鈦礦光電感測器 5
1-4 鈣鈦礦光電感測器製程方法 7
1-4-1 刮刀塗佈法 7
1-4-2 燒結和鍵結 7
1-4-3 粉末熔融法 8
1-4-4 噴塗法 9
1-4-5 熱蒸鍍 10
1-5 無機鈣鈦礦光電感測器改善 12
1-5-1 改善光利用效率 12
1-5-2 添加電荷傳輸層改善載子傳輸 15
1-5-3 參雜離子改善薄膜品質 17
1-5-4 熱退火製程之改善 18
1-6 研究動機 20
第二章 實驗方法 21
2-1 實驗材料與儀器 21
2-1-1 實驗材料 21
2-1-2 實驗儀器 22
2-2 實驗步驟 24
2-2-1 FTO 導電玻璃清洗 24
2-2-2 二氧化鈦緻密層(c-TiO2)的合成與塗佈 24
2-2-3 二氧化鈦介孔層(m-TiO2)的合成與塗佈 24
2-2-4 CsPbBr3 蒸鍍 25
2-2-5 薄膜熱處理 25
2-2-6 碳膠刮塗 25
2-3 光電感測器元件量測方法 26
2-3-1 雷射光功率測量標準 27
2-3-2 光電感測器性能分析 28
2-4 實驗儀器分析介紹 30
2-4-1 X射線繞射儀(X-ray Diffractometer, XRD) 30
2-4-2 紫外線/可見光分光光譜儀(Ultraviolet-visible spectroscopy, UV-vis) 30
2-4-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30
2-4-4 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) 31
2-4-5 光電感測器元件I-V curve量測 31
第三章 結果與討論 32
3-1 CsPbBr3 光電感測器 32
3-1-1 FTO/CsPbBr3/C光電感測器 33
3-1-2 FTO/c-TiO2/m-TiO2/CsPbBr3/C光電感測器 41
3-2 主動層UPS分析 46
3-3 最佳參數元件分析 48
3-3-1 不同光功率下效能測試 48
3-3-2 耐候性測試 50
3-3-3 在日光燈下的響應特性 51
3-3-4 響應時間測試 55
3-4-5 與其他論文性能比較 56
第四章 結論 59
參考文獻 60
參考文獻 [1] J. Miao and F. Zhang, "Recent progress on highly sensitive perovskite photodetectors," Journal of Materials Chemistry C, vol. 7, no. 7, pp. 1741-1791, 2019.
[2] D. Kaur and M. Kumar, "A strategic review on gallium oxide based deep‐ultraviolet photodetectors: recent progress and future prospects," Advanced optical materials, vol. 9, no. 9, p. 2002160, 2021.
[3] G. Tong, M. Jiang, D.-Y. Son, L. Qiu, Z. Liu, L. K. Ono and Y. Qi, "Inverse growth of large-grain-size and stable inorganic perovskite micronanowire photodetectors," ACS applied materials & interfaces, vol. 12, no. 12, pp. 14185-14194, 2020.
[4] L. Yang, W.-L. Tsai, C.-S. Li, B.-W. Hsu, C.-Y. Chen, C.-I. Wu and H.-W. Lin, "High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications," ACS applied materials & interfaces, vol. 11, no. 50, pp. 47054-47062, 2019.
[5] X. Guan, X. Yu, D. Periyanagounder, M. R. Benzigar, J. K. Huang, C. H. Lin, J. Kim, S. Singh, L. Hu and G. Liu, "Recent progress in short‐to long‐wave infrared photodetection using 2D materials and heterostructures," Advanced Optical Materials, vol. 9, no. 4, p. 2001708, 2021.
[6] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature photonics, vol. 8, no. 7, pp. 506-514, 2014.
[7] S. Gavranovic, J. Pospisil, O. Zmeskal, V. Novak, P. Vanysek, K. Castkova, J. Cihlar and M. Weiter, "Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals," ACS Applied Materials & Interfaces, vol. 14, no. 17, pp. 20159-20167, 2022.
[8] X. Pan, J. Zhang, H. Zhou, R. Liu, D. Wu, R. Wang, L. Shen, L. Tao, J. Zhang and H. Wang, "Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication," Nano-Micro Letters, vol. 13, pp. 1-12, 2021.
[9] K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K. L. Choy, I. P. Parkin and Z. Guo, "Flexible and self‐powered photodetector arrays based on all‐inorganic CsPbBr3 quantum dots," Advanced Materials, vol. 32, no. 22, p. 2000004, 2020.
[10] C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang and F. Gao, "High performance and stable all‐inorganic metal halide perovskite‐based photodetectors for optical communication applications," Advanced materials, vol. 30, no. 38, p. 1803422, 2018.
[11] Y. Haruta, M. Kawakami, Y. Nakano, S. Kundu, S. Wada, T. Ikenoue, M. Miyake, T. Hirato and M. I. Saidaminov, "Scalable fabrication of metal halide perovskites for direct X-ray flat-panel detectors: A perspective," Chemistry of Materials, vol. 34, no. 12, pp. 5323-5333, 2022.
[12] Y. C. Kim, K. H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee and N.-G. Park, "Printable organometallic perovskite enables large-area, low-dose X-ray imaging," Nature, vol. 550, no. 7674, pp. 87-91, 2017.
[13] M. Xia, Z. Song, H. Wu, X. Du, X. He, J. Pang, H. Luo, L. Jin, G. Li and G. Niu, "Compact and Large‐Area Perovskite Films Achieved via Soft‐Pressing and Multi‐Functional Polymerizable Binder for Flat‐Panel X‐Ray Imager," Advanced Functional Materials, vol. 32, no. 16, p. 2110729, 2022.
[14] S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp and J. E. Huerdler, "High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites," Nature Electronics, vol. 4, no. 9, pp. 681-688, 2021.
[15] M. Hu, S. Jia, Y. Liu, J. Cui, Y. Zhang, H. Su, S. Cao, L. Mo, D. Chu and G. Zhao, "Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity," ACS applied materials & interfaces, vol. 12, no. 14, pp. 16592-16600, 2020.
[16] W. Pan, B. Yang, G. Niu, K. H. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. S. Miao and J. Tang, "Hot‐pressed CsPbBr3 quasi‐monocrystalline film for sensitive direct X‐ray detection," Advanced Materials, vol. 31, no. 44, p. 1904405, 2019.
[17] M. Zhu, X. Du, G. Niu, W. Liu, W. Pan, J. Pang, W. Wang, C. Chen, Y. Xu and J. Tang, "Template directed perovskite X-ray detectors towards low ionic migration and low interpixel cross talking," Fundamental Research, vol. 2, no. 1, pp. 108-113, 2022.
[18] Y. Haruta, T. Ikenoue, M. Miyake, and T. Hirato, "Fabrication of (101)-oriented CsPbBr3 thick films with high carrier mobility using a mist deposition method," Applied Physics Express, vol. 12, no. 8, p. 085505, 2019.
[19] Y. Haruta, S. Wada, T. Ikenoue, M. Miyake, and T. Hirato, "Columnar grain growth of lead-free double perovskite using mist deposition method for sensitive X-ray detectors," Crystal Growth & Design, vol. 21, no. 7, pp. 4030-4037, 2021.
[20] Y. Haruta, T. Ikenoue, M. Miyake, and T. Hirato, "Fabrication of CsPbBr3 thick films by using a mist deposition method for highly sensitive X-ray detection," MRS Advances, vol. 5, no. 8-9, pp. 395-401, 2020.
[21] W. Qian, X. Xu, J. Wang, Y. Xu, J. Chen, Y. Ge, J. Chen, S. Xiao and S. Yang, "An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors," Matter, vol. 4, no. 3, pp. 942-954, 2021.
[22] X. Xu, W. Qian, J. Wang, J. Yang, J. Chen, S. Xiao, Y. Ge and S. Yang, "Sequential Growth of 2D/3D Double‐Layer Perovskite Films with Superior X‐Ray Detection Performance," Advanced Science, vol. 8, no. 21, p. 2102730, 2021.
[23] W. Li, Y. Xu, J. Peng, R. Li, J. Song, H. Huang, L. Cui and Q. Lin, "Evaporated perovskite thick junctions for X-ray detection," ACS Applied Materials & Interfaces, vol. 13, no. 2, pp. 2971-2978, 2021.
[24] M. I. Pintor Monroy, I. Goldberg, K. Elkhouly, E. Georgitzikis, L. Clinckemalie, G. Croes, N. Annavarapu, W. Qiu, E. Debroye and Y. Kuang, "All-Evaporated, All-Inorganic CsPbI3 Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications," ACS Applied Electronic Materials, vol. 3, no. 7, pp. 3023-3033, 2021.
[25] W. Tian, L. Min, F. Cao, and L. Li, "Nested Inverse Opal Perovskite toward Superior Flexible and Self‐Powered Photodetection Performance," Advanced Materials, vol. 32, no. 16, p. 1906974, 2020.
[26] R. Xing, P. Shi, D. Wang, Z. Wu, Y. Ge, Y. Xing, L. Wei, S. Yan, Y. Tian and L. Bai, "Flexible Self-Powered Weak Light Detectors Based on ZnO/CsPbBr3/γ-CuI Heterojunctions," ACS Applied Materials & Interfaces, vol. 14, no. 35, pp. 40093-40101, 2022.
[27] T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nature photonics, vol. 4, no. 5, pp. 297-301, 2010.
[28] R. Hui, "Photodetectors," in Introduction to fiber-optic communications: Elsevier Amsterdam, The Netherlands, 2020, pp. 125-154.
[29] J. E. Whitten, "Ultraviolet photoelectron spectroscopy: Practical aspects and best practices," Applied Surface Science Advances, vol. 13, p. 100384, 2023.
[30] S. M. Sze, Semiconductor devices: physics and technology. John wiley & sons, 2008.
[31] B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng and K. Han, "Ultrasensitive and fast all‐inorganic perovskite‐based photodetector via fast carrier diffusion," Advanced Materials, vol. 29, no. 40, p. 1703758, 2017.
[32] M. Sebastian, J. Peters, C. Stoumpos, J. Im, S. Kostina, Z. Liu, M. Kanatzidis, A. Freeman and B. Wessels, "Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3," Physical Review B, vol. 92, no. 23, p. 235210, 2015.
[33] M. Kulbak, D. Cahen, and G. Hodes, "How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells," The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015.
[34] F. Cao, W. Tian, K. Deng, M. Wang, and L. Li, "Self‐Powered UV–Vis–NIR Photodetector Based on Conjugated‐Polymer/CsPbBr3 Nanowire Array," Advanced Functional Materials, vol. 29, no. 48, p. 1906756, 2019.
[35] J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li and H. Zeng, "Monolayer and few‐layer all‐inorganic perovskites as a new family of two‐dimensional semiconductors for printable optoelectronic devices," Advanced materials, vol. 28, no. 24, pp. 4861-4869, 2016.
[36] D. J. Lee, G. M. Kumar, Y. Kim, W. Yang, D. Y. Kim, T. W. Kang and P. Ilanchezhiyan, "Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance," Journal of Materials Research and Technology, vol. 18, pp. 4946-4955, 2022.
[37] W. Kim, S. K. Kim, S. Jeon, J. Ahn, B. K. Jung, S. Y. Lee, C. Shin, T. Y. Seong, S. Jeong and H. S. Jang, "Patterning All‐Inorganic Halide Perovskite with Adjustable Phase for High‐Resolution Color Filter and Photodetector Arrays," Advanced Functional Materials, vol. 32, no. 16, p. 2111409, 2022.
[38] N. Lamers, Z. Zhang, and J. Wallentin, "Perovskite-compatible electron-beam-lithography process based on nonpolar solvents for single-nanowire devices," ACS applied nano materials, vol. 5, no. 3, pp. 3177-3182, 2022.
[39] H. Algadi, J. Ren, and A. Alqarni, "A high-performance self-powered photodetector based on solution-processed nitrogen-doped graphene quantum dots/all-inorganic perovskite heterostructures," Advanced Composites and Hybrid Materials, vol. 6, no. 3, p. 98, 2023.
[40] T. Shi, X. Chen, R. He, H. Huang, X. Yuan, Z. Zhang, J. Wang, P. K. Chu and X. F. Yu, "Flexible All‐Inorganic Perovskite Photodetector with a Combined Soft‐Hard Layer Produced by Ligand Cross‐Linking," Advanced Science, p. 2302005, 2023.
[41] M. R. Subramaniam, A. K. Pramod, S. A. Hevia, and S. K. Batabyal, "Enhanced Photoluminescence Quantum Yield, Lifetime, and Photodetector Responsivity of CsPbBr3 Quantum Dots via Antimony Tribromide Post-Treatment," The Journal of Physical Chemistry C, vol. 126, no. 3, pp. 1462-1470, 2022.
[42] 林啟玄,「高壓輔助熱退火製程改善全無機鈣鈦礦太陽能電池之研究」,國立中央大學,碩士論文,中華民國111年
指導教授 詹佳樺 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明