博碩士論文 110323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.133.131.159
姓名 楊詠程(Yong-Cheng Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 可用於電刺激與拉伸刺激之模組化生物反應器設計
(Design of modulized bioreactor for mechanical and electrical stimulation)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-11-21以後開放)
摘要(中) 生物反應器在生物工程、藥物研發以及組織培養中扮演著不可或缺的角色。鑑於許多研究指出,外部物理刺激擁有促進細胞成長、分化的作用,例如:機械拉伸、電刺激、剪應力等,然而許多研究仍無法以多種外部物理刺激的方式對細胞刺激,並且在許多研究中所設計出來的物理力刺激生物反應器功能性比較單一且變化性較小,整體設備無法做到模組化以至於限制了設備的擴增性,加上無良好的控制系統支持,導致設備在使用者眼中成為一個專門用於特定細胞或組織的生物反應器,大大的限制了使用的廣泛性,而現今市面上所販售的商用化物理力刺激生物反應器,大部分也都是只擁有單一刺激的模式,只有少部分廠家的生物反應器擁有提供複數物理力刺激的生物反應器,並可以進行良好的細胞培養,且擁有良好的控制系統提供一個模擬細胞自然生長環境的場所,但市售的生物反應器很大缺點則是售價高昂,並不適合大部分的研究機構使用。
因此本論文將嘗試以聚甲基丙烯酸甲酯(PMMA)製作設備本體,並以已沉積聚吡咯(PPy)的聚二甲基矽氧烷(PDMS)薄膜作為細胞培養載體,設計一個模組化的複合式物理力刺激生物反應器,其刺激模式結合了電脈衝刺激與氣動拉伸刺激,並將其設備與刺激模式皆模組化增加設備的使用廣泛性與擴增性,可供使用者根據實驗需求自行搭配,在控制系統的部分使用Raspberry Pi來做其控制中心,並搭配所設計的控制介面來控制拉伸刺激與電刺激的參數,最終完成一台低成本的模組化複合式物理力刺激生物反應器。
摘要(英) Bioreactors play an integral role in bioengineering, drug development, and tissue culture. In view of the fact that many studies have pointed out that external physical stimulation can promote cell growth and differentiation, such as mechanical stretching, electrical stimulation, shear stress, etc., however, many studies are still unable to stimulate cells in a variety of external physical stimulation ways, and in many cases The physical force stimulation bioreactor designed in the study has a relatively single functionality and low variability. The overall equipment cannot be modularized, which limits the scalability of the equipment. In addition, there is no good control system support, resulting in In the eyes of the user, the equipment becomes a bioreactor dedicated to specific cells or tissues, which greatly limits the breadth of use. Most of the commercial physical force stimulation bioreactors sold on the market today are also Only a single stimulation mode is available. Only a few manufacturers of bioreactors have bioreactors that provide multiple physical force stimulations, can perform good cell culture, and have good control systems to provide a place that simulates the natural growth environment of cells. However, the biggest disadvantage of commercially available bioreactors is that they are expensive and are not suitable for use by most research institutions.
Therefore, this paper will try to use polymethylmethacrylate (PMMA) to make the device body, and use polydimethylsiloxane (PDMS) film with polypyrrole (PPy) deposited as the cell culture carrier to design a modular A composite physical force stimulation bioreactor, its stimulation mode combines electrical pulse stimulation and pneumatic stretch stimulation, and its equipment and stimulation mode are modularized to increase the versatility and expansion of the equipment, making it available to users According to the experimental needs, the Raspberry Pi is used as the control center in the control system, and the designed control interface is used to control the parameters of stretching stimulation and electrical stimulation. Finally, a low-cost modular composite device is completed. Physical forces stimulate the bioreactor.
關鍵字(中) ★ 機械力刺激生物反應器
★ 多刺激生物反應器
★ 物理力刺激生物反應器
★ 生物反應器
關鍵字(英) ★ Mechanical force stimulation bioreactor
★ multistimulus bioreactor
★ Physical force stimulates bioreactor
★ Bioreactor
論文目次 目錄
摘要 I
Abstract III
圖目錄 VI
1.前言 p.1
1.1 生物反應器的發展與現況 p.1
1.2 物理性刺激對細胞的影響 p.4
1.3 生物反應器設計的重要方面 p.8
1.4 動機 p.13
2. 實驗 p.15
2.1 實驗設備與材料 p.16
2.2 細胞載體(PDMS/ppy meberne)選用與製造 p.18
2.3 應變測量 p.21
2.4 電刺激信號測量 p.24
2.5 設備製造 p.27
3. 結果與討論 p.28
3.1複合式物理力刺激生物反應器結構設計概念製作 p.28
3.1.1整體設備結構設計 p.29
3.1.2結構部分一-升降載台 p.31
3.1.3結構部分二-模塊培養層 p.35
3.1.4結構部分三-上蓋層 p.38
3.2 拉伸刺激 p.41
3.2.1 PDMS薄膜拉伸疲勞實驗結果 p.42
3.2.2 關於應變與深度、薄膜厚度等相關性實驗結果 p.43
3.3 電刺激 p.48
3.3.1電刺激示波器量測結果 p.49
3.3.2 (垂直/水平)流道對電刺激影響 p.52
3.3.3 PPy阻抗狀態 p.53
3.4 人機介面及整體控制系統設計 p.56
3.5 複合式物理力刺激生物反應器 p.61
4. 結論 p.62
5. 參考文獻 p.64
參考文獻 1.Bareither, R. and D. Pollard, A review of advanced small‐scale parallel bioreactor technology for accelerated process development: Current state and future need. Biotechnology progress, 2011. 27(1): p. 2-14.
2.Martin, I., D. Wendt, and M. Heberer, The role of bioreactors in tissue engineering. Trends Biotechnol, 2004. 22(2): p. 80-6.
3.Putame, G., et al., Application of 3D printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. Journal of healthcare engineering, 2019. 2019.
4.Engler, A.J., et al., Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 2006. 126(4): p. 677-689.
5.Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.
6.Bilodeau, K. and D. Mantovani, Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue engineering, 2006. 12(8): p. 2367-2383.
7.Jin, G., G.H. Yang, and G. Kim, Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. J Biomed Mater Res B Appl Biomater, 2015. 103(4): p. 935-48.
8.Mertsching, H. and J. Hansmann, Bioreactor technology in cardiovascular tissue engineering. Bioreactor Systems for Tissue Engineering, 2009: p. 29-37.
9.Araque-Monrós, M.C., et al., New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation. Expert Review of Medical Devices, 2020. 17(10): p. 1115-1121.
10.Davies, P.F. and S.C. Tripathi, Mechanical stress mechanisms and the cell. An endothelial paradigm. Circulation research, 1993. 72(2): p. 239-245.
11.Butler, D.L., S.A. Goldstein, and F. Guilak, Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 2000. 122(6): p. 570-575.
12.Chien, S., Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 2007. 292(3): p. H1209-H1224.
13.Davis, M.E., et al., Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res, 2001. 89(11): p. 1073-80.
14.Freed, L.E., et al., Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences, 1997. 94(25): p. 13885-13890.
15.Mullender, M., et al., Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Medical and Biological Engineering and Computing, 2004. 42: p. 14-21.
16.Zhao, M., et al., Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. Journal of cell science, 2004. 117(3): p. 397-405.
17.Kern, H., et al., Recovery of long‐term denervated human muscles induced by electrical stimulation. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 2005. 31(1): p. 98-101.
18.Serena, E., et al., Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Experimental cell research, 2009. 315(20): p. 3611-3619.
19.Vodovnik, L., D. Miklavčič, and G. Serša, Modified cell proliferation due to electrical currents. Medical and Biological Engineering and Computing, 1992. 30(4): p. CE21-CE28.
20.Nuccitelli, R., A role for endogenous electric fields in wound healing. Current topics in developmental biology, 2003. 58(2): p. 1-26.
21.Miklas, J.W., et al., Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication, 2014. 6(2): p. 024113.
22.Lim, D., et al., Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-design and Manufacturing, 2022: p. 1-21.
23.Karim, A.S. and M.C. Jewett, A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metabolic engineering, 2016. 36: p. 116-126.
24.Griffith, L.G. and M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nature reviews Molecular cell biology, 2006. 7(3): p. 211-224.
25.Li, Y. and E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug screening. Science advances, 2018. 4(4): p. eaas8998.
26.Wang, T., et al., Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnology and bioengineering, 2013. 110(5): p. 1495-1507.
27.Olmos, E., et al., Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess and biosystems engineering, 2013. 36: p. 259-272.
28.Schirmaier, C., et al., Scale‐up of adipose tissue‐derived mesenchymal stem cell production in stirred single‐use bioreactors under low‐serum conditions. Engineering in Life Sciences, 2014. 14(3): p. 292-303.
29.Sung, J.H., et al., Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a Chip, 2013. 13(7): p. 1201-1212.
30.McGrail, D.J., et al., Actomyosin tension as a determinant of metastatic cancer mechanical tropism. Physical biology, 2015. 12(2): p. 026001.
31.McCoy, R.J. and F.J. O′Brien, Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Engineering Part B: Reviews, 2010. 16(6): p. 587-601.
32.Khetan, S. and J.A. Burdick, Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials, 2010. 31(32): p. 8228-8234.
33.Lee, P.-H., <External actuated microfluidic electromechanical control platform.pdf>. 2022.
34.Thompson, C.L., et al., Mechanical stimulation: a crucial element of organ-on-chip models. Frontiers in bioengineering and biotechnology, 2020. 8: p. 602646.
35.Huh, D., et al., Microfabrication of human organs-on-chips. Nat Protoc, 2013. 8(11): p. 2135-57.
36.Hu, W.W., et al., The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J Biomed Mater Res B Appl Biomater, 2019. 107(5): p. 1607-1619.
37.Barash, Y., Electric Field Stimulation Integrated into Perfusion Bioreactor for Cardiac Tissue Engineering. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1417-1426.
38.Mooney, E., et al., The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 2012. 33(26): p. 6132-6139.
39.Naughton, G.K., From lab bench to market: critical issues in tissue engineering. Annals of the New York Academy of Sciences, 2002. 961(1): p. 372-385.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2023-12-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明