參考文獻 |
1. W.-Y. Chiang, Optimal Analysis of Syngas Fed Solid Oxide Fuel Cell in Megawatt Systems, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2021.
2. 弗朗諾·巴爾伯, PEM燃料電池:理論與實踐, 機械工業出版社, 中國, 2016.
3. A. B. Stambouli and E. Traversa, “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy,” Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455, 2002.
4. S. C. Singhal, “Advances in Solid Oxide Fuel Cell Technology,” Solid State Ionics, Vol. 135, pp. 305-313, 2000.
5. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, 2016.
6. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, Solid State Ionics, Vol, 148, pp. 513-519, 2002.
7. J. M. Ralph, A. C. Schoeler, and M. Krumpelt “Materials for Low- Temperature Solid Oxide Fuel Cells, ” Journal of Materials Science, Vol. 36, pp. 1161-1172, 2001.
8. D. Ghosh, G. Wang, R. Brule, E. Tang, and P. Huang, “Performance of Anode Supported Planar SOFC Cells,” The Electrochemical Society, Vol. 19, pp. 822-829, 1999.
9. I. Villarreal, C. Jacobson, A. Leming, Y. Matus, S. Visco, and L. De Jongheb, “Metal-Supported Solid Oxide Fuel Cells,” Electrochemical and Solid-State Letters, Vol. 6, pp. 178-179, 2003.
10. D. Udomsilp, J. Rechberger, R. Neubauer, C. Bischof, F. Thaler, W. Schafbauer, N. H. Menzler, G. J. de Haart, A. Nenning, A. K. Opitz, O. Guillon, and M. Brams, “Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender System,” Cell Reports Physical Science, Vol. 1, 100072, 2020.
11. H. Yakabe, M. Hishinuma, and M. Uratani, “Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 86 pp. 423-431, 2000.
12. M. Tang, W. Chen, and L. Yan” Analysis of The Brazing Joints of Tubular Zirconia Ceramics and 06Cr19Ni10 Stainless Steel Tubes,” Advances in Applied Ceramics, Vol. 120, pp. 10-16, 2021.
13. S. Bremm, S. Dölling, W. Becker, L. Blum, Ro. Peters, J. Malzbender, and D. Stolten, “A Methodological Contribution to Failure Prediction of Glass Ceramics Sealings in High-Temperature Solid Oxide Fuel Cell Stacks,” Journal of Power Sources, Vol. 507, 230301, 2021.
14. H. Bian, Y. Song, D. Liu, Y. Lei, X. Song, and J. Cao, “Joining of SiO2 Ceramic and TC4 Alloy by Nanoparticles Modified Brazing Filler Metal,” Journal of Aeronautics, Vol. 33, pp. 383-390, 2020.
15. Z. Wang, C. Li, X. Si, B. Yang, Y. Huang, J. Qi, J. Feng, and J. Cao, “Brazing YSZ Ceramics by a Novel SiO2 Nanoparticles Modified Ag Filler,” Ceramics International, Vol. 46, pp. 16493-16501, 2020.
16. K. S. Weil, C. A. Coyle, J. T. Darsell, G. G. Xia, and J S. Hardy, “Effects of Thermal Cycling and Thermal Aging on The Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals,” Journal of Power Sources, Vol. 152, pp. 97-104, 2005.
17. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
18. K. S. Weil and B. J. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.
19. W.-C. Jiang, Y.-C. Zhang, W. Woo, and S. T. Tu, “Three-Dimensional Simulation to Study the Influence of Foil Thickness on Residual Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 209, pp. 65-71, 2012.
20. S. Baek, J. Jeong, J. H. Kim, C. Lee, and J. Bae, “Interconnect-Integrated Solid Oxide Fuel Cell with High Temperature Sinter-Joining Process,” International Journal of Hydrogen Energy, Vol. 35, pp. 11878-11889, 2010.
21. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465–3476, 2007.
22. D. A. Krainova, S. T. Zharkinova, N. S. Saetova, A. A. Raskovalov, A. V. Kuz’min, V. A. Eremin, E. A. Sherstobitova, S. V. Pershina, M. V. Dyadenko, X. Zhang, and S. Jiang, “Influence of Cerium Oxide on Properties of Glass-Ceramic Sealants for Solid Oxide Fuel Cells,” Russian Journal of Applied Chemistry, Vol. 90, pp. 1278-1284, 2017.
23. F. Smeacetto, M. Salvo, M. Santarelli, P. Leone, G.A. Ortigoza-Villalba, A. Lanzini, L.C. Ajitdoss, and M. Ferraris, “Performance of a Glass-Ceramic Sealant in an SOFC Short Stack,” International Journal of Hydrogen Energy, Vol. 38, pp. 588-596, 2013.
24. S.-F. Wang, Y.-F. Hsu, C.-S. Cheng, and Y.-C. Hsieh, “SiO2-Al2O3-Y2O3-ZnO Glass Sealants for Intermediate Temperature Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 38, pp. 14779-14790, 2013.
25. L. Peng, Q.-S. Zhu, Z.-H. Xie, and P. Wang, “Interface Reactions Between Sealing Glass and Metal Interconnect under Static and Dynamic Heat Treatment Conditions,” Journal of Electrochemical Energy Conversation and Storage, Vol. 12, 061009, 2015.
26. N. Punbusayakul, K. Boonsiri, S. Charojrochkul, B. Fungtammasan, and J. Charoensuk, “Assessment on Hermetic Property and Mechanical Compatibility of Various Groove-Gasket Sealing Designs for Solid Oxide Fuel Cell Stack” Journal of power sources, Vol. 213, pp. 186-202, 2012.
27. M. C. Tucker, C. P. Jacobson, L.C. De Jonghe, and S. J. Visco “A Braze System for Sealing Metal-Spupported Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 106, pp. 1049-1057, 2006.
28. Q. Zhou, T. R. Bieler, and J. D. Nicholas, “Transient Porous Nickel Interlayers for Improved Silver-Based Solid Oxide Fuel Cell Brazes” Acta Materialia, Vol. 148, pp. 156-162, 2018.
29. K. Lin, M. Singh, R. Asthana, and C. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag–Cu–Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063–2071, (2014).
30. T. Bause, J. Malzbender, M. Pausch, T. Beck, and L. Singheiser, “Damage and Failure of Silver Based Ceramic/Metal Joints for SOFC Stacks,” Fuel Cells, Vol. 13, pp. 578-583, 2013.
31. B. Kuhn, E. Wessel, J. Malzbender, R.W. Steinbrech, and L. Singheiser, “Effect of Isothermal Aging on the Mechanical Performance of Brazed Ceramic/Metal Joints for Planar SOFC-Stacks,” International Journal of Hydrogen Energy, Vol. 35, pp. 9158-9165, 2010.
32. B. Kuhn, F. J. Wetzel, J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Mechanical Performance of Reactive-Air-Brazed (RAB) Ceramic/Metal Joints for Solid Oxide Fuel Cells at Ambient Temperature” Journal of Power Sources, Vol. 193, pp. 199-202, 2009.
33. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, and J. Hjelm, “An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
34. C.-L. Chao, C.-L. Chu, Y.-K. Fuh, R.-Q. Hsu, S. Lee, and Y.-N. Cheng, “Interfacial Characterization of Nickel–Yttria-Stabilized Zirconia Cermet Anode/Interconnect Joints with Ag–Pd–Ga Active Filler for Use in Solid-Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 40, pp. 1523-1533, 2015.
35. J. T. Darsell and K. S. Weil “High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals,” International Journal of Hydrogen Energy, Vol. 36, pp. 4519-4524, 2011.
36. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, and K. Sun, “Effective Ag–CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
37. S. Lee, K.-H. Kang, H. S. Hong, Y. Yun, and J.-H. Ahn, “Interfacial Morphologies Between NiO–YSZ Fuel Electrode/316 Stainless Steel as the Interconnect Material and B–Ni3 Brazing Alloy in a Solid Oxide Fuel Cell System,” Journal of Alloys and Compounds, Vol. 488, pp. L1-L5, 2009.
38. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, vol. 164, pp. 238–251, 2007.
39. C.-K. Lin, T.-T. Chen, A.-S. Chen, Y.-P. Chyou, and L.-K. Chiang, “Finite Element Analysis of Thermal Stress Distribution in Planar SOFC,” ECS Transactions, Vol. 7, pp. 1977–1986, 2007.
40. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources Vol. 192, pp. 515-524, 2009.
41. T. Venkateswaran, V. Xavier, D. Sivakumar, B. Pant, and G.D. J. Ram, “Brazing of Stainless Steels Using Cu-Ag-Mn-Zn Braze Filler: Studies on Wettability, Mechanical Properties, and Microstructural Aspects,” Materials & Design, Vol. 121, pp. 213-225, 2017.
42. J. Y. Kim, J. S. Hardy, and S. Weil, “Dual-Atmosphere Tolerance of Ag-CuO-Based Air Braze,” International Journal of Hydrogen Energy, Vol. 32, pp. 3655-3663, 2007.
43. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag-CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
44. K.-L. Lin, M. Singh, R. Asthana, and C.-H. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag-Cu-Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063-2071, 2014.
45. J. Y. Kim, J. S. Hardy, and K. S Weil, “Ag–Al Based Air Braze for High Temperature Electrochemical Devices,” International Journal of Hydrogen Energy, Vol. 33, pp. 3754-3762, 2007.
46. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, K. Norrman, C. Chatzichristodoulou, and P. Hendriksen, “An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
47. X. Si, J. Cao, B. Talic, I. Ritucci, C. Li, J. Qi, J. Feng, and R. Kiebach, “A Novel Ag Based Sealant for Solid Oxide Cells with a Fully Tunable Thermal Expansion,” Journal of Alloys and Compounds, Vol. 831, 154608, 2020.
48. C.-K. Lin, K.-Y. Chen, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Mechanical Durability of Solid Oxide Fuel Cell Glass-ceramic Sealant/Steel Interconnect Joint under Thermo-mechanical Cycling,” Renewable Energy, Vol. 138, pp. 1205-1213, 2019.
49. A. Atkinson and B. Sun, “Residual Stress and Thermal Cycling of Planar Solid Oxide Fuel Cells,” Materials Science and Technology, Vol. 23, pp. 1135-1143, 2007.
50. F. Smeacetto, A. Chrysanthou, M. Salvo, T. Moskalewicz, F. D. Bytner, L. C. Ajitdoss, and M. Ferraris, “Thermal Cycling and Ageing of a Glass-ceramic Sealant for Planar SOFCs,” International Journal of Hydrogen Energy, Vol. 36, pp. 11895-11903, 2011.
51. F. Smeacetto, A. Chrysanthou, T. Moskalewicz, and M. Salvo, “Thermal Cycling of Crofer22APU-sealant-anode Supported Electrolyte Joined Structures for Planar SOFCs up to 3000h,” Materials Letters, Vol. 111, pp. 143-146, 2013.
52. N. E. Dowling, S. L. Kampe, and M. V. Kral, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2020.
53. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Cheng, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
54. S. J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, and K. J. Yoon, “Acceleration Tests: Degradation of Anode-Supported Planar Solid Oxide Fuel Cells at Elevated Operating Temperatures,” Journal of Power Sources, Vol. 360, pp. 284-293, 2017.
55. Y.-S. Chou, J. W. Stevenson, and J.-P. Choi, “Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part II: Sealing Glass Stability, Microstructure and Interfacial Reactions,’’ Journal of Power Sources, Vol. 250, pp. 166-173, 2014.
56. D. Ciria, M. Jiménez-Melendo, V. Aubin, and G. Dezanneau, “Creep Properties of High Dense La9.33Si6O26 Electrolyte for SOFCs,’’ Journal of the European Ceramic Society, Vol. 40, pp. 1989-1998, 2020.
57. J. Wei and J. Malzbender, “Steady State Creep of Ni-8YSZ Substrates for Application in Solid Oxide Fuel and Electrolysis Cells,” Journal of Power Sources, Vol. 360, pp. 1-10, 2017.
58. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. Van herlea, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,’’ Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
59. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass-Ceramic Sealant with Metallic Interconnect,’’ Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
60. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
61. C.-K. Lin, T.-W. Lin, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Creep Rupture of the Joint Between a Glass-Ceramic Sealant and Lanthanum Strontium Manganite-Coated Ferritic Stainless Steel Interconnect for Solid Oxide Fuel Cells,’’ Journal of the European Ceramic Society, Vol. 38, pp. 2417-2429, 2018.
62. Y. Wang, W. Jiang, M. Song, Y. Zhang, and S.-T. Tu, “Effect of Frame Material on the Creep of Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 44, pp. 20323-20335, 2019.
63. H.-L. Hsu, Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell, M.S. Thesis, Tao-Yuan, National Central University, 2015.
64. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
65. Y.-C. Zhang, X.-T. Yu, W. Jiang, S.-T. Tu, X.-C. Zhang, and Y.-J. Ye, “Creep Fracture Behavior of the Crofer 22 APU for the Interconnect of Solid Oxide Fuel Cell Under Different Temperatures,’’ International Journal of Hydrogen Energy, Vol. 45, pp. 4829-4840, 2020
66. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
67. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,” Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
68. Y.-W. Tseng, Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2020.
69. W.-T. Hung, Creep Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2021.
70. Z.-F. Shen, Thermo-Mechanical Fatigue Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2022.
71. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
72. L.-W. Huang, C.-K. Liu, Y.-N. Cheng, and R.-Y. Lee, Brazing Material Composition and Manufacturing Method Thereof, ROC Patent No. I634220, 2018.
73. https://cdn.standards.iteh.ai/samples/702/7fdf248fa8414d5ebf6ef38068f63646/IEC-60068-2-14-2009.pdf (accessed on June 17, 2023).
74. https://zhuanlan.zhihu.com/p/625322737 (accessed on June 5, 2023).
75. R. C. Hibbeler, Statics and Mechanics of Materials , 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2019.
76. A. Kaletsch, A. Bezold, E. M. Pfaff, and C. Broeckmann, “Effects of Copper Oxide Content in AgCuO Braze Alloy on Microstructure and Mechanical Properties of Reactive-Air-Brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),” Journal of Ceramic Science and Technology, Vol. 3, pp. 95-104, 2012.
77. https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_H.pdf. (accessed on June 5, 2023).
78. S. Suresh, Fatigue of Materials, Cambridge University Press, UK, 1991.
79. T. Vojtek, P. Pokorný, I. Kuběna, L. Náhlík, R. Fajkoš and P. Huta “Quantitative Dependence of Oxide-Induced Crack Closure on Air Humidity for Railway Axle Steel,” International Journal of Fatigue, Vol. 123, pp. 213-224, 2019.
80. J. A. De Souza, S. Goutianos, M. Skovgaard, and B. F. Sørensen, “Fracture Resistance Curves and Toughening Mechanisms in Polymer Based Dental Composites,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 558-571, 2011.
81. V. Tvergaard, “On Fatigue Crack Growth in Ductile Materials by Crack-Tip Blunting,” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 2149-2166, 2004.
82. D. J. Nicholls, “The Relation Between Crack Blunting and Fatigue Crack Growth Rates,” International Journal of Fatigue, Vol. 17, pp. 449, 1995.
83. V. P. Rajan and W. A. Curtin, “Crack Tip Blunting and Cleavage Under Dynamic Conditions,” Journal of the Mechanics and Physics of Solids, Vol. 90, pp. 18-28, 2016. |