博碩士論文 110323017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.217.63.133
姓名 甘立鳴(Li-Ming Gan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 椎板間穩定器對於非骨融合手術初期生物力學影響
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 近年來非骨融合式的腰椎手術的發展逐漸興起,該類手術主要目的是希望在提供腰椎穩定性的同時又不失活動度,且不會如骨融合手術一樣為不可逆的。在臨床上有許多不同型式的植入物被用於治療各種腰椎的病變並評估其使用效果,目前常使用的方法可分為臨床實驗、大體試驗,還有模擬分析,而有限元素法之所以廣泛被用於評估植入物對腰椎生物力學影響是因為於臨床上難以判定其植入後的受力情況。雖然現今已有多種的後路腰椎系統發行於市面上,但這些植入物本身還是存在些缺失,可能會因患者的骨質密度或材料性質造成限制而無法達到預期的效果。因此本研究著重的椎板間穩定器以及新型椎板間穩定器之設計相較先前的後路穩定器系統不會因材料性質的剛性過高導致代償或是限制前彎後仰等活動,使在臨床上獲得最大的效益並預防鄰近節退化的發生。
植體與椎骨間所撐起的椎體距離對腰椎生物力學的初期穩定度有一定的影響,然而沒有文獻針對腰椎植體撐起所帶來的初始穩定度進行評估並提出合理的椎間距離設定方式。因此本研究透過韌帶預力的設定方式來模擬臨床上於植體安裝後椎間距離撐起的情況,並給予不同撐高距離來做比較。
本研究建立了L3-L5節段的腰椎模型來進行有限元素分析,包括健康與退化兩種情況,進行人體腰椎生物力學指標分析,以觀察植入物對於腰椎之生物力學影響。
研究結果顯示,退化的腰椎會因椎間盤脫水以及椎間盤幾何形狀之變化造成退化節活動度降低與椎間受力逐漸轉移至纖維環上;鄰近節的活動度則因代償現象提升,進而增加椎間盤的受力。在無韌帶預力的設定下,本研究兩種椎板間穩定器可在腰椎的前彎及後仰活動度有限制,使鄰近節需代償的活動度提升;在椎間盤相關之指標則與健康腰椎相似,沒有明顯的減壓效果去表明出植體的支撐性。在有韌帶預力施加的設定下,兩種椎板間穩定器除了對前彎及後仰有限制外,還觀察到因PEEK材質加入之新型椎板間穩定器,其活動度之限制更多;由椎間盤相關之指標亦可看出新型椎板間穩定器更具加支撐性。整體而言,新型椎板間穩定器雖會降低植入節活動度約10%以內,但它具有較佳的支撐性,且對於鄰近節的影響較低。有限元素分析時若不考慮韌帶預力,則椎間的穩定性會被低估。本研究的限制包括採用等向性材料性質、韌帶預力作用位置與大小、還有未考慮肌肉受力等,這些問題皆需要進一步探討。
摘要(英) In recent years, there has been a growing development of non-fusion lumbar spine surgeries. The main objective of these surgeries is to provide lumbar stability without compromising mobility, and they are reversible unlike fusion surgeries. In clinical practice, various types of implants are used to treat different lumbar pathologies and evaluate their effectiveness. Commonly evaluation methods include clinical trials, cadaveric experiments, and simulation analyses. The finite element method is widely used to assess the biomechanical effects of implants on the lumbar spine because it is difficult to determine the stresses of post-implants clinically.
Although there are various posterior lumbar spine systems available on the market, these implants still have some limitations. They may not achieve the desired function due to limitations imposed by material properties or patient-specific factors such as bone density. This study focuses on the design of pedicle-based stabilizers, including a new design, which aims to avoid excessive rigidity caused by material properties, compensation, or limitations on activities such as flexion and extension. The goal is to maximize clinical benefits and prevent adjacent segment degeneration.
The intervertebral distance induced by the implant has an impact on the initial stability of lumbar spine biomechanics. However, there is no literature that evaluates the initial stability resulting from implant support and proposes a reasonable method for setting the intervertebral distance. Therefore, this study compares the effects of intervertebral distance by simulating the intervertebral distance after implant installation using ligament preloading.
This study establishes a lumbar spine model of the L3-L5 segment for finite element analysis, including both healthy and degenerated conditions, to analyze the biomechanical performance of the human lumbar spine and the implants.
The results show that degenerated lumbar spines experience reduced segmental mobility and gradually transfer stresses to the annulus fibrosus due to dehydration and changes in intervertebral disc geometry. The mobility of adjacent segment increases due to compensatory phenomena, thus increasing the stresses on the intervertebral disc. Without ligament preloading, both pedicle-based stabilizer models restrict flexion and extension of the lumbar spine, leading to increased compensatory mobility in adjacent segments. The intervertebral disc-related indicators are similar to those of a healthy spine, with no significant decompression effect to indicate implant support. With ligament preloading, both stabilizer models can limit flexion and extension, and the addition of PEEK material in the new pedicle-based stabilizer results in more restriction on mobility. The intervertebral disc-related indicators demonstrate better support with the new stabilizer. Overall, the new pedicle-based stabilizer reduced the range of motion of the implanted segment by about 10%, but it had better support and less impact on adjacent segments. Intervertebral stability may be underestimated if ligament prestress is not considered in finite element analysis. Limitations of this study include the use of isotropic material properties, the location and magnitude of ligament preloading, and the absence of muscle forces, which need further investigation.
關鍵字(中) ★ 椎板間穩定器
★ 非骨融合手術
★ 有限元素分析
★ 韌帶預力
★ 生物力學響應
關鍵字(英) ★ Interlamina Device
★ Non-fusion Surgery
★ Finite Element Analysis
★ Ligament Preloading
★ Biomechanical Response
論文目次 摘要 i
Abstract iii
誌謝 v
表目錄 ix
圖目錄 xi
第一章 緒論 1
1-1 研究背景與動機 1
1-2 脊椎構造介紹 2
1-2-1 椎骨 3
1-2-2 椎間盤 4
1-2-3 韌帶 5
1-3 腰椎疾病介紹 6
1-3-1椎間退化 6
1-3-2椎間盤突出症 7
1-3-3椎管狹窄症 8
1-3-4腰椎滑脫 10
1-4 腰椎手術發展簡介 12
1-4-1腰椎融合手術 (傳統及微創) 13
1-4-2腰椎非融合手術 15
1-5 研究目的 21
1-6 本文架構 22
第二章 文獻回顧 24
2-1 腰椎退化與對鄰近節的影響 24
2-2 骨融合式植入物臨床研究(Posterior Lumbar Interbody Fusion) 26
2-3 非骨融合式植入物臨床研究(Non-fusion Surgery) 28
2-3-1 動態式脊椎固定系統 28
2-3-2 椎凸間穩定器 29
2-3-3 椎板間穩定器(IntraSPINE) 30
2-4 後位椎弓融合穩定器、後位椎弓動態穩定器及椎凸間穩定器之有限元素分析比較 31
第三章 研究方法 35
3-1 腰椎模型建立 36
3-1-1 Amira影像處理 37
3-1-2 網格處理 39
3-1-3 實體腰椎模型 40
3-1-4 退化椎間盤模擬 41
3-2 椎板間穩定器(Interlaminar Dynamic Spacer, IntraSPINE)設計 42
3-3 有限元素分析 44
3-3-1有限元素法分析步驟 45
3-3-2 材料性質設定 45
3-3-3 元素選用 47
3-3-4 網格設定 48
3-3-5 接觸與邊界條件設定 51
3-3-6 分析結果之指標選用 54
3-3-7 收斂性分析 55
第四章 結果與討論 57
4-1 有限元素網格收斂分析 57
4-2 健康與退化模型之活動度與生物力學指標 60
4-2-1 腰椎活動度 60
4-2-2 椎間盤應力 62
4-2-3 小面關節應力 68
4-3 椎體距離撐起(韌帶預力施加) 71
4-3-1 纖維環與髓核指標觀察 72
4-3-2 植入物指標觀察 75
4-4 椎板間穩定器蝴蝶狀位置之位移分析 76
4-5 植入椎板間穩定器後之活動度與生物力學影響 78
4-5-1 腰椎活動度 78
4-5-1-1未施加韌帶預力情形 78
4-5-1-2施加相同韌帶預力情形 80
4-5-1-3施加不同韌帶預力情形(考慮材料支撐性) 82
4-5-2 椎間盤應力 85
4-5-2-1未施加韌帶預力情形 85
4-5-2-2施加相同韌帶預力情形 89
4-5-2-3施加不同韌帶預力情形(考慮材料支撐性) 93
4-5-3 小面關節應力 100
第五章 結論與未來研究方向 104
5-1 結論 104
5-1-1 健康與退化腰椎 104
5-1-2 腰椎植入物 105
5-2 未來研究方向 106
參考文獻 107
參考文獻 1. F. Netter, Atlas of Human Anatomy. Medicine & Health Science: Netherlands, Elsevier, 2018. ISBN: 1437709702.
2. Spinous Process Definition. Available from:
https://www.spine-health.com/glossary/spinous-process#:~:text=Spinous%20process%20is%20a%20bony,and%20ligaments%20of%20the%20spine
3. 洪志毅, "不同的脊椎植入物對腰椎椎體與小面關節的影響",國立陽明大學醫學工程研究所,碩士論文,2006。
4. 柯靜柳,衛教園地.秀傳紀念醫院,2003。
Available from: https://www.scmh.org.tw/
5. P. Dolan and M.A. Adams, Recent Advances in Lumbar Spinal Mechanics and their Significance for Modelling. Clin Biomech (Bristol, Avon). Vol. 16 Suppl 1, pp. S8-S16, 2001.
6. A. A. White and M. M. Panjabi. Clinical Biomechanics of the Spine. ISBN:0397507208, 1990; Available from: http://leomed.at/listhoscan/white_90.pdf.
7. D. B. McFarlane, Notes on Anatomy and Physiology: The Intervertebral Discs. 2010; Available from: https:
//ittcs.wordpress.com/2010/06/01/anatomy-and-physiology-the-intervertebral-discs/.
8. 脊椎結構-韌帶Ligament. 2011; Available from: https://blog.xuite.net/christine885678287/twblog/173584161#.
9. 周鴻燦,腰椎管狹窄症常見問題,2020; Available from: https://asiamedicalspecialists.hk/tc/health-info/14/%E8%85%B0%E6%A4%8E%E7%AE%A1%E7%8B%B9%E7%AA%84%E7%97%87%E5%B8%B8%E8%A6%8B%E5%95%8F%E9%A1%8C.
10. 鮑卓倫,常見脊椎疾病. 2007; Available from: http://ispinecare.com/index.html.
11. 椎管狹窄症. 2011; Available from: https://blog.xuite.net/christine885678287/twblog/173583364.
12. 傳統腰椎融合手術. 2016.
Available from: https://bonebro.com/lumbar-fusion-surgery/
13. 鄭本岡,脊椎開刀–傳統手術、微創手術、顯微手術三者的區別. 2019; Available from: https://fuyaclinic.com/%E8%84%8A%E6%A4%8E%E9%96%8B%E5%88%80-%E5%82%B3%E7%B5%B1%E6%89%8B%E8%A1%93%E3%80%81%E5%BE%AE%E5%89%B5%E6%89%8B%E8%A1%93%E3%80%81%E9%A1%AF%E5%BE%AE%E6%89%8B%E8%A1%93%E4%B8%89%E8%80%85%E7%9A%84%E5%8D%80.html.
14. 鲍卓倫,微創脊椎手術. 2007. Available from:
https://ispinecare.com/miss/index.html
15. P. Kambin, Re: K. T. Foley, L. T. Holly., J. D. Schwender. Minimally Invasive Lumbar Fusion. Spine 2003;28:S26-35. Spine (Phila Pa 1976). Vol. 29, Iss. 5, pp. 598-599, 2004.
16. 台北市立聯合醫院,後方腰椎椎間融合術. Available from: https://tpech.gov.taipei/mp109141/News_Content.aspx?n=BF83D2D64BCDBD4B&s=EF40A3E0F723378D.
17. C. K. Lee, Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion. Spine (Phila Pa 1976). Vol.13, No. 3, pp. 375-377, 1988.
18. 莊活力,非融合腰椎手術之我見. Available from: https://www.tcmg.com.tw/knowledge/knowledge_2_detail.php?Key=547&cID=4.
19. S. Feng, New Combination of IntraSPINE Device and Posterior Lumbar Interbody Fusion for Rare Skipped-Level Lumbar Disc Herniation: A Case Report and Literature Review. J Int Med Res. Vol. 48, Iss. 8, 2020.
20. H. H. Boucher, A method of Spinal Fusion. J Bone Joint Surg Br. Vol. 41-B, Iss. 2, pp. 248-259, 1959.
21. Elite-Surgical-Supplies.
Available from: https://www.elitesurgical.com/
22. 莊文賢, "腰椎非線性有限元素分析之等效比較方法研究與應用",國立中央大學機械工程學系,博士論文,2013.
23. S. Freudiger, G. Dubois, and M. Lorrain, Dynamic Neutralisation of the Lumbar Spine Confirmed on a new Lumbar Spine Simulator in Vitro. Arch Orthop Trauma Surg. Vol. 119, Iss. 3-4, pp. 127-132, 1999.
24. M. P. Grevitt., et al., The Graf Stabilisation System: Early Results in 50 Patients. Eur Spine J. Vol. 4, Iss. 3, pp. 169-175; discussion 135, 1995.
25. T. M. Stoll., G. Dubois, and O. Schwarzenbach, The Dynamic Neutralization System for the Spine: A Multi-Center Study of a Novel Non-Fusion System. Eur Spine J. 11 Suppl 2(Suppl 2): p. S170-8, 2002.
26. C. Schilling, S. Kruger, T. M. Grupp, G. N. Duda, W. Blomer, A. Rohlmann, The Effect of Design Parameters of Dynamic Pedicle Screw Systems on Kinematics and Load Bearing: An in Vitro Study. Eur Spine J. Vol. 20, Iss. 2, pp. 297-307, 2011.
27. 中正脊椎骨科醫院,脊突間穩定器. Available from:
http://www.spine-center.asia/page.aspx?id=11516.
28. Interspinous-Spacers. Available from:
http://www.arcos.com.uy/en/productos/53-194/traumatology/interspinous-spacers/diamr-spinal-stabilization-system-.html
29. Dynamic Lumbar Stabilization with the Wallis Interspinous Implant. 2008.
30. M. D. Brian and J. Sullivan, Neurosurgeon, Inventing a Relief for Back Pain.
31. K. L. Yeh., S. H. Wu, and S. S. Wu, Application of the IntraSPINE Interlaminar Device in Patients with Osteoporosis and Spinal Stenosis: Two Case Reports. J Int Med Res , 2021.
32. D. S. McNally, In Vivo Stress Measurement can Predict Pain on Discography. Spine (Phila Pa 1976). Vol.21, Iss. 22, pp. 2580-2587, 1996.
33. A. C. Schwarzer, C. N. April, R. Derby, J. Fortin, G. Kine, N. Bogduk, The Prevalence and Clinical Features of Internal Disc Disruption in Patients with Chronic Low Back Pain. Spine (Phila Pa 1976). Vol. 20, Iss. 17, pp. 1878-1883, 1995.
34. S. D. Kuslich, C. L. Ulstrom, and C. J. Michael, The Tissue Origin of Low Back Pain and Sciatica: A Report of Pain Response to Tissue Stimulation During Operations on the Lumbar Spine Using Local Anesthesia. Orthop Clin North Am. Vol. 22, Iss. 2, pp. 181-187.1991.
35. L. M. Benneker, P. F. Heini, S. E. Anderson, M. Alini, K. Ito, Correlation of Radiographic and MRI Parameters to Morphological and Biochemical Assessment of Intervertebral Disc Degeneration. Eur Spine J. Vol. 14, Iss. 1, pp. 27-35, 2005.
36. M. Teraguchi, et al., Prevalence and Distribution of Intervertebral Disc Degeneration over the Entire Spine in a Population-Based Cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. Vol. 22, Iss. 1, pp. 104-110, 2014.
37. A. Elfering, Risk Factors for Lumbar Disc Degeneration: A 5-year Prospective MRI Study in Asymptomatic Individuals. Spine (Phila Pa 1976), Vol. 27, Iss. 2, pp. 125-134. 2002.
38. R. N. Natarajan, J. R. Williams, and G. B. Andersson, Modeling Changes in Intervertebral Disc Mechanics with Degeneration. J Bone Joint Surg Am, Vol. 88, Iss. 2 Suppl, pp. 36-40. 2006.
39. S. D. Kuslich, G. Danielson, J. D. Dowdle, J. Sherman, B. Fredrickson, H. Yuan, S. L. Griffith, Four-year Follow-up Results of Lumbar Spine Arthrodesis using the Bagby and Kuslich Lumbar Fusion Cage. Spine (Phila Pa 1976). Vol. 25, Iss. 20, pp. 2656-2662, 2000.
40. J. D. Schlegel, J. A. Smith, and R. L. Schleusener, Lumbar Motion Segment Pathology Adjacent to Thoracolumbar, Lumbar, and Lumbosacral Fusions. Spine (Phila Pa 1976). Vol. 21, Iss. 8, pp. 970-981, 1996.
41. W. Y. Chou, C. Hsu, W. Chang, C. Wong, Adjacent Segment Degeneration after Lumbar Spinal Posterolateral Fusion with Instrumentation in Elderly Patients. Arch Orthop Trauma Surg. Vol. 122, Iss. 1, pp. 39-43, 2002.
42. B. W. Cunningham, J. D. Gordon, A. E. Dmitriev, N. Hu, P. C. McAfee , Biomechanical Evaluation of Total Disc Replacement Arthroplasty: An in Vitro Human Cadaveric Model. Spine (Phila Pa 1976). Vol. 28, Iss. 20, pp. S110-117, 2003.
43. S. L. Weinhoffer, Intradiscal Pressure Measurements above an Instrumented Fusion. A Cadaveric Study. Spine (Phila Pa 1976). Vol. 20, Iss. 5, pp. 526-531, 1995.
44. P. C. McAfee, D. J. Weiland, and J. J. Carlow, Survivorship Analysis of Pedicle Spinal Instrumentation. Spine (Phila Pa 1976). Vol. 16, Iss. 8 Suppl, pp. S422-427, 1991.
45. S. H. Davne, and D. L. Myers, Complications of Lumbar Spinal fusion with Transpedicular Instrumentation. Spine (Phila Pa 1976). Vol.17, Iss. 6 Suppl, pp. S184-189, 1992.
46. R. B. Ashman, R. D. Galphin, J. D. Corin, C. E. Johnson, Biomechanical Analysis of Pedicle Screw Instrumentation Systems in a Corpectomy Model. Spine (Phila Pa 1976). Vol. 14, Iss. 12, pp. 1398-1405, 1989.
47. S. I. Esses, , B. L. Sachs, and V. Dreyzin, Complications Associated with the Technique of Pedicle Screw Fixation. A Selected Survey of ABS Members. Spine (Phila Pa 1976). Vol. 18, Iss. 15, pp. 2231-2238; discussion 2238-9, 1993.
48. American-Back-Society. Available from:
http://www.americanbacksoc.org/.
49. K. Okuyama, Can Insertional Torque Predict screw Loosening and Related Failures? An in vivo study of Pedicle Screw Fixation Augmenting Posterior Lumbar Interbody Fusion. Spine (Phila Pa 1976). Vol. 25, Iss. 7, pp. 858-864, 2000.
50. M. R. Zindrick, A Biomechanical Study of Intrapeduncular Screw Fixation in the Lumbosacral Spine. Clin Orthop Relat Res (203): pp. 99-112, 1986.
51. D. Grob, Clinical Experience with the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-oriented Outcome in 50 Cases after an Average of 2 years. Spine (Phila Pa 1976). Vol. 30, Iss. 3, pp. 324-331, 2005.
52. K. J. Schnake, S. Schaeren, and B. Jeanneret, Dynamic Stabilization in Addition to Decompression for Lumbar Spinal Stenosis with Degenerative Spondylolisthesis. Spine (Phila Pa 1976). Vol. 31, Iss. 4, pp. 442-449, 2006.
53. A. Kumar, et al., Disc Changes in the Bridged and Adjacent Segments after Dynesys Dynamic Stabilization System after two years. Spine (Phila Pa 1976) Vol. 33, Iss. 26, p. 2909-2914, 2008..
54. B. Cakir, C. Carazoo, R. Schmidt, T. Mattes, H. Reichel, W. Kafer, Adjacent Segment Mobility after Rigid and Semirigid Instrumentation of the Lumbar Spine. Spine (Phila Pa 1976). Vol. 34, Iss. 12, pp. 1287-1291, 2009.
55. A. Richter, C. Schutz, M. Hauck, H. Halm, Does an Interspinous Device (Coflex) Improve the Outcome of Decompressive Surgery in Lumbar spinal stenosis? One-year Follow up of a Prospective Case Control Study of 60 Patients. Eur Spine J. Vol. 19, Iss. 2, pp. 283-289, 2010.
56. D. Adelt, Coflex® Interspinous Stabilization: Clinical and Radiographic Results from an International Multicenter Retrospective Study, 2007
57. C. Song, X. Li, Z. Liu, G. Zhong, Biomechanical Assessment of a Novel L4/5 Level Iinterspinous Implant using Three Dimensional Finite Element Analysis. Eur Rev Med Pharmacol Sci. Vol. 18, Iss. 1, pp. 86-94, 2014.
58. N. Sandu, B. Schaller, B. Arasho, M. Orabi, Wallis Interspinous Implantation to Treat Degenerative Spinal Disease: Description of the Method and Case Series. Expert Rev Neurother. Vol. 11, Iss. 6, pp. 799-807, 2011.
59. Y. Floman, Failure of the Wallis Interspinous Implant to Lower the Incidence of Recurrent Lumbar Disc Herniations in Patients Undergoing Primary Disc Excision. J Spinal Disord Tech. Vol. 20, Iss. 5, pp. 337-341, 2007.
60. S. D. Christie, J. K. Song, and R. G. Fessler, Dynamic Interspinous Process Technology. Spine (Phila Pa 1976). 30(16 Suppl): p. S73-8, 2005.
61. 網路資料:坐骨神經痛一文盡覽3大成因!坐骨神經痛有甚麼常見症狀?如何預防坐骨神經痛來襲?. 2021; Available from:
https://blog.beauty-place.com.hk/%E5%9D%90%E9%AA%A8%E7%A5%9E%E7%B6%93%E7%97%9B/.
62. Z. F. Shitong Feng., X. Li, J. Lin, Y. Yang, Q. Fei, Combination of Intraspine Interlaminar Device with Lumbar Discectomy in Patients with L5/S1 Disc Herniation. Research Square, 2018.
63. Drs. G. R. M. Guizzardi, S. Pradella, B. Piccardi, E. Amoruso, M. Ceccarelli, C. M. and M. S. Mattioli, and P. Petrini, IntraSPINE, an Interlaminar, Not Interspinous, Posterior Motion Preservation Device in Lumbar DDD: Indications and Clinical Results (over 2 year follow-up). Neurocirugía-Neurocirurgia. Vol. 18, 2011.
64. A. Rohlmann, H. N. Boustani, G. Bergman, T. Zander, Effect of a Pedicle-Screw-Based Motion Preservation System on Lumbar Spine Biomechanics: A Probabilistic Finite Element Study with Subsequent Sensitivity Analysis. J Biomech. Vol. 43, Iss.15, pp. 2963-2969, 2010.
65. Y. Fan, S. Zhou, T. Xie, X. Han, L. Zhu, Topping-Off Surgery vs Posterior Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Finite Element Analysis. J Orthop Surg Res. Vol. 14, Iss. 1, p. 476, 2019.
66. Z. Q. Zhu, S. Duan, K. Wang, H. Liu, S. Xe, C. Liu, Biomechanical Effect of Bone Resorption of the Spinous Process after Single-Segment Interspinous Dynamic Atabilization Device Implantation: A Finite Element Analysis. Medicine (Baltimore). Vol. 97, Iss. 27, 2018.
67. C. M. Bellini, F. Galbusera, M. T. Raimodi, G. V. Mineo, M. Brayda-Bruno, Biomechanics of the Lumbar Spine after Dynamic Stabilization. J Spinal Disord Tech. Vol. 20, Iss. 6, pp. 423-429, 2007.
68. H. Shen, G. R. Fogel, J. Zhu, Z. Liao, W. Liu, Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurg. Vol.127, pp. e1112-e1119, 2019.
69. M. C. Battie., T. Videman, and E. Parent, Lumbar Disc Degeneration: Epidemiology and Genetic Influences. Spine (Phila Pa 1976). Vol. 29, Iss. 23, pp. 2679-2690, 2004.
70. 許誌文, "腿骨二維輪廓點資料之三維網格模型重建",國立中央大學機械工程學系,碩士論文,2008.
71. 陳信豪, "二維CT醫學影像之骨頭輪廓自動擷取",國立中央大學機械工程學系,碩士論文,2008.
72. 張湧翔, "可撐式椎籠於骨融合手術初期之生物力學影響",國立中央大學機械工程學系,碩士論文,2012.
73. 陶仕晉, "腰椎後路穩定系統設計最佳化及其生物力學影響", 國立中央大學機械工程學系,碩士論文,2014.
74. Z. C. Zhong, S. H. Wei, J. P. Wang, C. K. Feng, C. S. Chen, C. Yu, Finite Element Analysis of the Lumbar Spine with a new Cage using a Topology Optimization Method. Med Eng Phys. Vol. 28, Iss.1, pp. 90-98, 2006.
75. A. Shirazi-Adl, A. M. Ahmed, and S. C. Shrivastava, Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined with Compression. Spine (Phila Pa 1976). Vol. 11, Iss. 9, pp. 914-927, 1986.
76. U. M. Ayturk and C. M. Puttlitz, Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine. Comput Methods Biomech Biomed Engin. Vol. 14, Iss. 8, pp. 695-705, 2011.
77. L. M. Ruberte, R. N. Natarajan, and G. B. Andersson, Influence of Single-Level Lumbar Degenerative Disc Disease on the Behavior of the Adjacent Segments-a Finite Element Model Study. J Biomech. Vol. 42, Iss. 3, pp. 341-348, 2009.
78. S. Tang and B. J. Rebholz, Does Lumbar Microdiscectomy Affect Adjacent Segmental Disc Degeneration? A Finite Element Study. J Surg Res. Vol. 182, Iss. 1, pp. 62-67, 2013.
79. X. Y. Cai, et al., Biomechanical Effect of L4-L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study. Orthop Surg. Vol. 12, Iss. 3, pp. 917-930, 2020.
80. X. Y. Cai, D. Seng, C. Yuchi, W. Cui, C. Zhang, C. Du, B. Liu, Using Finite Element Analysis to Determine Effects of the Motion Loading Method on Facet Joint Forces after Cervical Disc Degeneration. Comput Biol Med. Vol. 116, 2020.
81. W. M. Park, K. Kim, and Y. H. Kim, Changes in Range of Motion, Intradiscal Pressure, and Facet Joint Force after Intervertebral Disc and Facet Joint Degeneration in the Cervical Spine. Journal of Mechanical Science and Technology. Vol. 29, Iss. 7, pp. 3031-3038, 2015.
82. SOLID187. Available from:
https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID187.html
83. COMBIN39. Available from:
https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_COMBIN39.html
84. A. Polikeit, S. J. Ferguson, L. P. Notle, T. E. Orr, Factors Influencing Stresses in the Lumbar Spine after the Insertion of Intervertebral Cages: Finite Element Analysis. Eur Spine J., Vol. 12, Iss. 4, pp. 413-420, 2003.
85. F. Galbusera, H. Schmidt, and H. J. Wilke, Lumbar Interbody Fusion: A Parametric Investigation of a Novel Cage Design with and without Posterior Instrumentation. Eur Spine J., Vol. 21, Iss. 3, pp. 455-462, 2012
86. 姜智騫, "以有限元素法分析腰椎退化性疾病經後方融合手術後已退化鄰近節之生物力學研究",國立成功大學土木工程學系,碩士論文,2014.
87. 楊銘安, "不同脊椎後方骨融合術於腰椎椎間盤退化問題之治療策略與生醫力學分析",國立臺灣科技大學機械工程系,碩士論文, 2016.
88. J. M. Warren, A. P. Mazzoleni, and L. A. Hey, Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration. Int J Spine Surg. Vol. 14, Iss. 4, pp. 502-510, 2020.
89. R. N. Natarajan and G. B. Andersson, The Influence of Lumbar Disc Height and Cross-sectional Area on the Mechanical Response of the Disc to Physiologic Loading. Spine (Phila Pa 1976). Vol. 24, Iss. 18, pp. 1873-1881, 1999.
90. C. F. Du, N. Yang, J. Guo, Y. Huang, C. Zhang, Biomechanical Response of Lumbar Facet Joints under Follower Preload: A Finite Element Study. BMC Musculoskelet Disord. Vol. 17, p. 126, 2016.
91. W. M. Park, K. Kim, and Y. H. Kim, Effects of Degenerated Intervertebral Discs on Intersegmental Rotations, Intradiscal Pressures, and Facet Joint Forces of the Whole Lumbar Spine. Comput Biol Med. Vol. 43, Iss. 9, pp. 1234-1240, 2013.
92. A. Rohlmann, T. Zander, H. Schmidt, H. Wikle, G. Bergmann, Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment using the Finite Element Method. J Biomech. Vol. 39, Iss. 13, pp. 2484-2490, 2006.
93. D. H. Byun, D. A. Shin, J. Kim, S. Kim, H. Kim, Finite Element Analysis of the Biomechanical Effect of Coflex on the Lumbar Spine. Korean J Spine. Vol. 9, No. 3, pp. 131-136, 2012.
94. D. S. Shin., K. Lee, and D. Kim, Biomechanical Study of Lumbar Spine with Dynamic Stabilization Device using Finite Element Method. Computer-Aided Design. Vol. 39, Iss. 7, pp. 559-567, 2007.
95. Drs. G. R. M. Guizzardi, S. Pradella, B. Piccardi, E. Amoruso, M. Ceccarelli, C.M. and M.S. Mattioli, and P. Petrini, IntraSPINE, an Interlaminar, not Interspinous, Posterior Motion Preservation Device in Lumbar DDD: Indications and Clinical Results (over 2 year follow-up), 2011.
96. Guizzardi Giancarlo, D.o.N., University and City Hospital Careggi, Florence, Italy., Clinical Results with IntraSPINE®. ECRONICON, 2015.
97. R. C. Mulholland and D. K. Sengupta, Rationale, Principles and Experimental Evaluation of the Concept of Soft Stabilization. Eur Spine J. Vol.11, Iss. 2 Suppl , pp. S198-205, 2002.
98. Y. Mas, L. Gracia, E. Ibarz, S. Gabarre, D. Pena, Antonio, Finite Element Simulation and Clinical Follow-up of Lumbar Spine Biomechanics with Dynamic Fixations. PLoS One. Vol. 12, Iss. 11, 2017.
99. 許峻川、楊雍、費琦, <新型椎板间动态稳定系统——IntraSPINE的研究進展 (pdf.io).pdf>. 中國醫學雜誌. 97, 2017.
100. S. Feng, Z. Fan, X. Li, J. Li, Y. Yang, Q. Fei, Combination of Intraspine Interlaminar Device With Lumbar Discectomy in Patients With L5/S1 Disc Herniation. Research Square, 2020.
101. A. Kettler, J. Drumm, F. Heuer, K. Haeuslsler, C. Mark, L. Claes, H. Wikie, Can a Modified Interspinous Spacer Prevent Instability in Axial Rrotation and Lateral Bending? A Biomechanical in vitro Study Resulting in a new idea. Clin Biomech (Bristol, Avon). Vol. 23, Iss. 2, pp. 242-247, 2008.
102. C. L. Gelder, M. Drozda, and G. Spink, Lumbar Microdiscectomy with Intraspine® – a Case Series. Coluna/Columna. Vol. 19, Iss. 3, pp. 201-204, 2020.
103. A. B. Darwono, The New Dynamic Interlaminar Device for the Treatment of Early and Late Lumbar Degenerative Problems. Global Spine Journal. Vol. 4, Iss. 1 suppl, 2017.
104. H. J. Lo, Effect of Different Designs of Interspinous Process Devices on the Instrumented and Adjacent Levels after Double-Level Lumbar Decompression Surgery: A finite element analysis. PLoS One. Vol. 15, No. 12, 2020.
105. H. J. Lo, C. Chen, H. Chen, S. Yang, Application of an Interspinous Process Device after Minimally Invasive Lumbar Decompression could Lead to Stress Redistribution at the Pars Interarticularis: A Finite Element Analysis. BMC Musculoskelet Disord. Vol. 20, Iss. 1, p. 213, 2019.
106. M. Sharma, N. A. Langrana, and J. Rodriguez, Role of ligaments and facets in lumbar spinal stability. Spine (Phila Pa 1976). Vol. 20, Iss. 8, pp. 887-900, 1995.
107. A. M. Wu, et al., Interspinous Spacer Versus Traditional Decompressive Surgery for Lumbar Spinal Stenosis: A Systematic Review and Meta-Analysis. PLoS One. Vol. 9, Iss. 5, 2014.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明