博碩士論文 110323047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.236.142.143
姓名 褚子淵(TZU-YUAN CHU)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助電化學留心加工矩槽圓柱構造之研究
(A Study on Ultrasonic Assisted Electrochemical Trepanning of Rectangular Groove with inner Cylindrical Structure)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
★ 超音波輔助電化學加工微孔陣列之研究★ 超音波輔助磨削AGC玻璃加工之研究
★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究★ 高功率超音波振動輔助線切割放電加工SKD61材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 於電化學加工過程中,時常因為加工間隙太過狹窄容易導致電解液更新不良,所產生之金屬氧化物、氣泡和反應熱堆積難以排除,進而影響到加工的精度和表面品質,尤其加工如矩槽圓柱等特殊結構,加工間隙之流場更不均勻,甚至可能導致工件和刀具電極之間直接碰撞,造成刀具電極和工件損壞。基於前述加工困難處,本論文使用脈衝電流複合超音波振動輔助側壁絕緣電極,並採用沉浸式對SUS304不鏽鋼圓塊工件進行電化學留心加工矩槽圓柱構造,並探討脈衝頻率、加工電流、超音波功率等級及占空比等不同加工參數對圓柱直徑、圓柱高度及圓柱錐度角等各種加工特性之影響。
研究結果顯示,實驗中採用側壁絕緣電極,進行遮罩式及沉浸式加工結果比較,相較於於遮罩式加工,沉浸式加工結果有較小之圓柱錐度角及較佳之外觀形貌。另採用脈衝電流複合超音波振動輔助進行沉浸式留心電化學加工時,可改善流場不均勻,以及超音波振動輔助施加於側壁絕緣電極上,造成加工區域中的電解液壓力快速產生變化,產生泵吸作用與空蝕作用,此二者會擾動電解液,加速加工間隙內電解液的循環更新,進而降低加工區域內之電阻值,得到更小之圓柱錐度角,以及矩槽底部流痕明顯減少。當採用實驗參數組合為脈衝頻率1000 Hz、加工電流18.5 A、超音波功率等級Level 6(Amplitude:1.117 μm )及占空比50 %時,可得到加工後最小圓柱錐度角1.697 °,相較於遮罩式加工後之圓柱錐度角2.114 °,下降了19.73%。
摘要(英) During electrochemical machining (ECM) processes, narrow processing inter-gap often lead to poor electrolyte renewal, inhibiting the removal of the metal oxides, bubbles, and heat generated during reactions. This can adversely affect the machining precision and surface quality of the workpiece, especially for complex structures such as rectangular groove with inner cylindrical structure. The flow field is uneven in the processing inter-gap of such structures, increasing the likelihood of direct collisions between the workpiece and the tool electrode and potentially causing damage to both the tool electrode and workpiece. To overcome these difficulties, this study proposes an approach entailing the combination of a pulse current with ultrasonic-vibration-assisted sidewall-insulated electrodes. The study then applied this approach to conduct electrochemical trepanning with tool sinking on SUS304 stainless steel round workpieces to create rectangular groove with cylindrical structure. The effects of various processing parameters, including the pulse frequency, machining current, power of ultrasonic vibration, and duty factor, on the workpiece quality, such as the diameter, height, and taper angle of the cylindrical structures, were measured through experiments.
The experimental results indicated that when the sidewall-insulated electrodes were used, ECM with tool sinking resulted in a smaller taper angle and better external appearance than did ECM with mask. For ECM with tool sinking, applying the combination of a pulse current with ultrasonic-vibration-assisted sidewall-insulated electrodes improved the uniformity of the flow field. Moreover, for the sidewall-insulated electrodes, ultrasonic vibration assistance caused rapid changes in the electrolyte pressure in the machining area. This resulted in pumping and cavitation effects, both of which disturbed the electrolyte, accelerating the circulation and renewal of the electrolyte within the inter-gap. This reduced the resistance within the machining area, thus significantly reducing both the taper angle and the flow marks at the bottom of the groove. The minimal taper angle 1.697° of the cylindrical structures was obtained with the following experimental parameter combination: Pulse frequency of 1000 Hz, machining current of 18.5 A, power of ultrasonic vibration of level 6, and duty factor of 50%. The taper angle of the cylindrical structures was 19.73% smaller than that obtained through ECM with mask.
關鍵字(中) ★ 電化學留心加工
★ 矩槽圓柱
★ 超音波振動輔助
★ 側壁絕緣電極
關鍵字(英) ★ Electrochemical Trepanning
★ Rectangular Groove with inner Cylinder
★ Ultrasonic Vibration-Assisted
★ Sidewall Insulated Electrode
論文目次 摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 5
1-4 論文架構 10
第二章 實驗基礎原理 11
2-1電化學加工基礎理論[2] 11
2-1-1 電化學反應機制 11
2-1-2 法拉第電解定律 (Faraday’s Laws of Electrolysis) 12
2-1-3 電化學加工速率 13
2-1-4 平衡間隙 14
2-1-5 歐姆定律(Ohm’s Law) 14
2-1-6 電極電位-金屬與溶液界面雙電層理論 15
2-1-7 陽極極化曲線及其特徵 16
2-1-8 電流密度與電流效率 17
2-1-9 脈衝占空比 19
2-2 超音波原理[43] 20
2-2-1 泵吸作用 (Pumping Effect) 20
2-2-2 空蝕作用 (Cavitation) 20
2-2-3 超音波振動電極之運動分析 21
2-3 氣泡影響電化學加工之理論(氣泡與導電度關係理論) [44] 23
2-3-1 體積分率 (Volume Fraction) 23
2-3-2 導電度 (Electrical Conductivity) 23
第三章 實驗設備與材料 25
3-1 實驗簡介 25
3-2 實驗設備 26
3-2-1 電化學加工機 26
3-2-2 去離子水系統 28
3-2-3 電子天平 29
3-2-4 電磁式加熱攪拌器 29
3-2-5 超音波主軸及發振器 30
3-2-6 超音波振幅量刀器 31
3-2-7 線切割放電加工機 31
3-2-8 CNC高速雕銑機 32
3-2-9 直流電源供應器 32
3-2-10 直接數位合成函數波訊號產生器 (DDS Function Generator) 33
3-2-11 絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor, IGBT) 33
3-2-12 示波器 34
3-2-13 超音波洗淨機 34
3-2-14 立體電子顯微鏡 35
3-2-15 雷射共軛焦暨白光干涉儀 (Laser Scanning Confocal Microscopy, LSCM) 36
3-3 實驗材料 36
3-3-1 不鏽鋼圓塊工件 36
3-3-2 黃銅薄片 36
3-3-3 環氧樹脂 37
3-3-4 側壁絕緣電極 37
3-3-5 電解液 38
3-3-6 遮罩 39
3-4 實驗流程與方法 41
3-4-1 電解液調配 42
3-4-2 工件準備 43
3-4-3 側壁絕緣電極製作 43
3-4-4 超音波振幅量測 46
3-4-5 實驗架設參數設定 48
3-4-6 實驗結果量測 49
3-4-6-1 圓柱之量測方式 49
3-4-6-2 圓柱之直徑量測 50
3-4-6-3 圓柱之高度量測 50
3-4-6-4 圓柱之錐度角量測 50
第四章 結果與討論 52
4-1 遮罩式及沉浸式加工對留心電化學加工矩槽圓柱之影響 52
4-2 有、無超音波振動輔助之加工比較 58
4-3 脈衝頻率對留心電化學加工矩槽圓柱之影響 62
4-4 加工電流對留心電化學加工矩槽圓柱之影響 69
4-5 超音波功率等級對留心電化學加工矩槽圓柱之影響 76
4-6 占空比對留心電化學加工矩槽圓柱之影響 84
第五章 結論 91
未來展望 93
參考文獻 94
參考文獻 [1] J. F. Wilson, Practice and theory of electrochemical machining, 1971.
[2] 朱樹敏, 電化學加工技術, 化學工業出版社, 北京, 2006.
[3] K. P. Rajurkar, M. Sundaram, and A. Malshe, "Review of electrochemical and electrodischarge machining," Procedia Cirp, vol. 6, pp. 13-26, 2013.
[4] F. Klocke, M. Zeis, A. Klink, and D. Veselovac, "Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks," Procedia Cirp, vol. 2, pp. 98-101, 2012.
[5] F. Klocke, M. Zeis, A. Klink, and D. Veselovac, "Experimental research on the electrochemical machining of modern titanium-and nickel-based alloys for aero engine components," Procedia Cirp, vol. 6, pp. 368-372, 2013.
[6] G. Zhouzhi, Z. Dong, X. Tingyu, L. Ao, and Z. Di, "Improvement of electrochemical trepanning by using a pictographic insulation sleeve," International Journal of Electrochemical Science, vol. 12, no. 11, pp. 10577-10588, 2017.
[7] X. Hu, D. Zhu, J. Li, and Z. Gu, "Flow field research on electrochemical machining with gas film insulation," Journal of Materials Processing Technology, vol. 267, pp. 247-256, 2019.
[8] C. Guo, J. Qian, and D. Reynaerts, "Electrochemical machining with scanning micro electrochemical flow cell (SMEFC)," Journal of Materials Processing Technology, vol. 247, pp. 171-183, 2017.
[9] D. Wang, Z. Zhu, N. Wang, and D. Zhu, "Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining," Chinese Journal of Mechanical Engineering, vol. 29, no. 5, pp. 971-976, 2016.
[10] J. Hung, H. Liu, Y. Chang, K. Hung, and S. Liu, "Development of helical electrode insulation layer for electrochemical microdrilling," Procedia Cirp, vol. 6, pp. 373-377, 2013.
[11] Z. Gu, D. Zhu, T. Xue, A. Liu, and D. Zhu, "Investigation on flow field in electrochemical trepanning of aero engine diffuser," The International Journal of Advanced Manufacturing Technology, vol. 89, pp. 877-884, 2017.
[12] W. Chen, F. Han, and J. Wang, "Influence of pulse waveform on machining accuracy in electrochemical machining," The International Journal of Advanced Manufacturing Technology, vol. 96, pp. 1367-1375, 2018.
[13] T. Koyano, A. Hosokawa, and T. Furumoto, "Analysis of electrochemical machining process with ultrashort pulses considering stray inductance of pulse power supply," Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 12, no. 5, pp. JAMDSM0098-JAMDSM0098, 2018.
[14] M. Hewidy, S. Ebeid, K. Rajurkar, and M. El-Safti, "Electrochemical machining under orbital motion conditions," Journal of Materials Processing Technology, vol. 109, no. 3, pp. 339-346, 2001.
[15] X. Jiang, J. Liu, D. Zhu, M. Wang, and N. Qu, "Research on stagger coupling mode of pulse duration and tool vibration in electrochemical machining," Applied Sciences, vol. 8, no. 8, p. 1296, 2018.
[16] H. El-Hofy, "Vibration-assisted electrochemical machining: a review," The International Journal of Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 579-593, 2019.
[17] H.-P. Tsui, J.-C. Hung, J.-C. You, and B.-H. Yan, "Improvement of electrochemical microdrilling accuracy using helical tool," Materials and Manufacturing Processes, vol. 23, no. 5, pp. 499-505, 2008.
[18] P. Pa, "Design of effective plate-shape electrode in ultrasonic electrochemical finishing," The International Journal of Advanced Manufacturing Technology, vol. 34, pp. 70-78, 2007.
[19] T. Shu, Y. Liu, K. Wang, T. Peng, and W. Guan, "Ultrasonic vibration-aided electrochemical drill-grinding of SLM-printed Hastelloy X based on analysis of its electrochemical behavior," Electrochemistry Communications, vol. 135, p. 107208, 2022.
[20] M. Wang, R. Zhang, Y. Shang, J. Zheng, X. Wang, and X. Xu, "Micro-milling microstructures in air-shielding ultrasonic assisted electrochemical machining," Journal of Manufacturing Processes, vol. 97, pp. 171-184, 2023.
[21] I. Yang, M. S. Park, and C. N. Chu, "Micro ECM with ultrasonic vibrations using a semi-cylindrical tool," International Journal of Precision Engineering and Manufacturing, vol. 10, pp. 5-10, 2009.
[22] W. Natsu, H. Nakayama, and Z. Yu, "Improvement of ECM characteristics by applying ultrasonic vibration," International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 1131-1136, 2012.
[23] 沈哲墉, "超音波振動超音波輔助電化學加工微孔陣列之研究," 國立中央大學, 2020.
[24] S. Skoczypiec, "Research on ultrasonically assisted electrochemical machining process," The International Journal of Advanced Manufacturing Technology, vol. 52, pp. 565-574, 2011.
[25] J. B. Patel, Z. Feng, P. P. Villanueva, and W. N. Hung, "Quality enhancement with ultrasonic wave and pulsed current in electrochemical machining," Procedia Manufacturing, vol. 10, pp. 662-673, 2017.
[26] Z. Gu, W. Zhu, X. Zheng, and X. Bai, "Cathode tool design and experimental study on electrochemical trepanning of blades," The International Journal of Advanced Manufacturing Technology, vol. 100, pp. 857-863, 2019.
[27] Z. Dong, G. Zhouzhi, X. Tingyu, and L. Ao, "Simulation and experimental investigation on a dynamic lateral flow mode in trepanning electrochemical machining," Chinese Journal of Aeronautics, vol. 30, no. 4, pp. 1624-1630, 2017.
[28] A. Ruszaj, M. Zybura, R. Żurek, and G. Skrabalak, "Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization," Proceedings of the institution of mechanical engineers, part B: journal of engineering manufacture, vol. 217, no. 10, pp. 1365-1371, 2003.
[29] L. Dabrowski and T. Paczkowski, "Computer simulation of two-dimensional electrolyte flow in electrochemical machining," Russian Journal of Electrochemistry, vol. 41, pp. 91-98, 2005.
[30] B. Bhattacharyya, M. Malapati, J. Munda, and A. Sarkar, "Influence of tool vibration on machining performance in electrochemical micro-machining of copper," International Journal of Machine Tools and Manufacture, vol. 47, no. 2, pp. 335-342, 2007.
[31] M. Purcar, A. Dorochenko, L. Bortels, J. Deconinck, and B. Van den Bossche, "Advanced CAD integrated approach for 3D electrochemical machining simulations," Journal of materials processing technology, vol. 203, no. 1-3, pp. 58-71, 2008.
[32] G. H. Liu, Y. Li, X. P. Chen, and S. J. Lv, "Research on side-insulation of tool electrode for micro electrochemical machining," Advanced Materials Research, vol. 60, pp. 380-387, 2009.
[33] S. Ali, S. Hinduja, J. Atkinson, and M. Pandya, "Shaped tube electrochemical drilling of good quality holes," CIRP annals, vol. 58, no. 1, pp. 185-188, 2009.
[34] D. Zhu, D. Zhu, and Z. Xu, "Optimal design of the sheet cathode using W-shaped electrolyte flow mode in ECM," The International Journal of Advanced Manufacturing Technology, vol. 62, pp. 147-156, 2012.
[35] A. Rebschläger, R. Kollmannsperger, and D. Bähre, "Video based process observations of the pulse electrochemical machining process at high current densities and small gaps," Procedia CIRP, vol. 14, pp. 418-423, 2014.
[36] L. Tang and W. Gan, "Utilization of flow field simulations for cathode design in electrochemical machining of aerospace engine blisk channels," The International Journal of Advanced Manufacturing Technology, vol. 72, pp. 1759-1766, 2014.
[37] D. Wang, Z. Zhu, J. Bao, and D. Zhu, "Reduction of stray corrosion by using iron coating in NaNO 3 solution during electrochemical machining," The International Journal of Advanced Manufacturing Technology, vol. 76, pp. 1365-1370, 2015.
[38] J. Yao, Z. Chen, Y. Nie, and Q. Li, "Investigation on the electrochemical machining by using metal reinforced double insulating layer cathode," The International Journal of Advanced Manufacturing Technology, vol. 89, pp. 2031-2040, 2017.
[39] J. Bian, B. Ma, L. Qi, and H. Gao, "Research on Improving the Taper of Hole Processing by Insulation Coating of ECM Cathode," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 842, no. 1: IOP Publishing, p. 012019.
[40] J. Xu, D. Zhu, J. Lin, and X. Hu, "Flow field design and experimental investigation of electrochemical trepanning of diffuser with a special structure," The International Journal of Advanced Manufacturing Technology, vol. 107, pp. 1551-1558, 2020.
[41] G. Liu, H. Tong, Y. Li, and H. Zhong, "Novel structure of a sidewall-insulated hollow electrode for micro electrochemical machining," Precision Engineering, vol. 72, pp. 356-369, 2021.
[42] W. Jingtao, X. Zhengyang, and Z. Di, "Improving profile accuracy and surface quality of blisk by electrochemical machining with a micro inter-electrode gap," Chinese Journal of Aeronautics, vol. 36, no. 4, pp. 523-537, 2023.
[43] 黃俊曄, "放電與超音波振動複合加工添加TIC及SIC粉末對AL-Zn-Mg系合金加工特性之影響," 國立中央大學, 2000.
[44] J. Thorpe and R. Zerkle, "A Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric Cavities by Electrochemical Machining," Fundamentals of Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39, 1971.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明