博碩士論文 110323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.188.57.0
姓名 曾煒策(Wei-Tse Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 機器學習輔助自沖鉚釘於鋁合金6061和雙相鋼(DP780、DP980、1180MS)端到端製程中之品質評估方法(鉚接品質和機械性質)
(Machine learning assisted evaluation methodology of selfpiercing rivets end-to-end process chain quality (joint quality and mechanical properties) for aluminum alloy 6061 and dual-phase steels (DP780,980,1180))
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本論文以不同模具設計與不同材料及厚度的鉚接為研究,進行了模擬驗證、鉚接與拉伸實驗,並以機器學習的人工神經網路(ANN)為輔助,以歸納出何種因素會對鉚接品質與機械性質造成影響。而詳細研究中我們使用了各種的雙相鋼(DP780、DP980、1180MS)和不同深度的模具以及板材的厚度進行實驗,由於傳統的點焊對於不同種類的金屬進行焊接是一件難以達成的目標,故此研究提出使用鉚接的方式,搭配有限元素法(FEM)對於鉚接時的材料流動及有效應力分布進行分析模擬驗證其金屬流動的過程,並提供品質表現指標(PM)與拉伸實驗後所得到的機械性質與能量吸收作為評估方式,最後將以上連結成一條龍式的製程,透過訓練模型,使未來無須透過實際實驗便能得出詳細的結果以避免不必要的成本浪費。
本研究的最佳組合為厚度1mm的1180MS搭配2mm的Al6061對應到2.25mm深度的下模具,其能夠承受的最大拉力為9.26kN,而透過計算所得出的能量吸收為36.02J,而ANN模型將各項組合的數據進行匯入後訓練出的成果包含幾何尺寸的互鎖尺寸(interlock)、殘餘厚度(remaining thickness)以及作為品質的PM值,還有機械性質相關的最大承受拉力和能量吸收後,可以對使用者輸入的材料、厚度、模具深度進行預測,而針對上面所提到的輸入透過計算所得到的平均絕對誤差(MAE,Mean Absolute Error)分別為:0.031mm、0.051mm、0.029、0.714kN和3.38J,對應到的平均絕對百分比誤差(MAPE,Mean Absolute Percentage Error)為8.53%、12.99%、16.8%、11.22%和13.96%。
摘要(英) In this study, we investigate the effects of different designs on the quality and strength of self-piercing riveting (SPR) in dissimilar metals. Specifically, we explore a wider range of dimensions that contribute to the overall strength of the joints. For this purpose, we prepared various dual-phase sheets of steel (DP780, DP980) and high-carbon steel (1180MS) to compare their strengths. Aluminum plates (Al6061) were also used consistently. We examine the shape and quality of the joints after riveting, and verify the trends of the important indicator, interlock, through simulations. Additionally, shear tests are conducted on the same samples to confirm the physical strength properties. Finally, the primary contribution of this study is to establish a correlation between the end-to-end process chain quality and shear test evaluations for self-piercing rivets of dissimilar metals, using Performance Metrics (PM) and mechanical properties, as well as energy absorption, as validation indicators. This study determined that the optimal combination is a die with a depth of 2.25mm, paired with a thickness of 1mm of 1180MS and 2mm of Al6061, capable of withstanding a maximum tensile force of 9.26kN and absorbing a maximum energy of 36.02 (J). This research employed an Artificial Neural Network (ANN) as a model to predict the quality and mechanical properties of riveting. The predicted outputs include interlock, remaining thickness, PM value, Maximum force, and energy absorption, serving as five reference indicators. The mean absolute errors (MAE) between the experimental and prediction results for the interlock, remaining thickness, PM value, maximum force and energy absorption reached 0.031mm, 0.051mm, 0.029, 0.714kN and 3.38J respectively, and the corresponding mean absolute percentage errors (MAPE) were 8.53 %, 12.99 %, 16.8 %, 11.22% and 13.96%. These results indicate a high level of prediction accuracy. Through validation against actual results, the study discusses the interrelationships between different riveting parameters and joint quality as well as mechanical properties.
關鍵字(中) ★ 自沖鉚釘
★ 異質材
★ 拉伸試驗
★ 端到端製程
關鍵字(英) ★ Self-piercing rivet
★ Dissimilar metals
★ Shear test
★ End-to-end process chain quality
論文目次 摘要 I
ABSTRACT III
致謝 V
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2研究動機與方法 3
第二章 文獻回顧 4
2-1 SPR加工製程 4
2-2 有限元素分析 4
2-3 材料特性 5
2-3-1 鋁合金特性 5
2-3-2 雙相鋼特性 5
2-4 機器學習 6
2-4-1 ANN模型(人工神經網路) 6
2-4-2機器學習之目標 7
第三章 材料與實驗設置 8
VIII
3-1 實驗材料 8
3-2 實驗設備 9
第四章 模擬和預測結果與實驗探討 16
4-1 鉚接之實驗設計 16
4-1-1鉚接之實驗設計與模擬 16
4-2 鉚接結果分析 21
4-2-1鉚接之剖面品質分析 21
4-2-2拉伸結果與破壞模式分析 29
4-3 ANN模型建立與預測結果討論 38
第五章 結論 47
參考文獻 49
參考文獻 [1] Y. Abe, T. Kato, and K. Mori, "Joinability of aluminium alloy and mild steel sheets by self piercing rivet," Journal of Materials Processing Technology, vol. 177, no. 1-3, pp. 417-421, 2006.
[2] Y. Abe, T. Kato, and K. Mori, "Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die," Journal of materials processing technology, vol. 209, no. 8, pp. 3914-3922, 2009.
[3] Z. Du, L. Duan, L. Jing, A. Cheng, and Z. He, "Numerical simulation and parametric study on self-piercing riveting process of aluminium–steel hybrid sheets," Thin-Walled Structures, vol. 164, p. 107872, 2021.
[4] R. Haque, "Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review," Archives of civil and mechanical engineering, vol. 18, no. 1, pp. 83-93, 2018.
[5] R. Haque and Y. Durandet, "Strength prediction of self-pierce riveted joint in cross-tension and lap-shear," Materials & Design, vol. 108, pp. 666-678, 2016.
[6] R. Haque, N. S. Williams, S. E. Blacket, and Y. Durandet, "A simple but effective model for characterizing SPR joints in steel sheet," Journal of Materials Processing Technology, vol. 223, pp. 225-231, 2015.
[7] D. Li, A. Chrysanthou, I. Patel, and G. Williams, "Self-piercing riveting-a review," The International Journal of Advanced Manufacturing Technology, vol. 92, pp. 1777-1824, 2017.
[8] X. Sun and M. A. Khaleel, "Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals," International journal of impact engineering, vol. 34, no. 10, pp. 1668-1682, 2007.
[9] X. Sun, E. V. Stephens, and M. A. Khaleel, "Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals," International journal of fatigue, vol. 29, no. 2, pp. 370-386, 2007.
[10] Z. Xie, W. Yan, C. Yu, T. Mu, and L. Song, "Improved shear strength design of cold-formed steel connection with single self-piercing rivet," Thin-Walled Structures, vol. 131, pp. 708-717, 2018.
[11] E. Atzeni, R. Ippolito, and L. Settineri, "Experimental and numerical appraisal of self-piercing riveting," CIRP annals, vol. 58, no. 1, pp. 17-20, 2009.
[12] R. Cacko, "Review of different material separation criteria in numerical modeling of the self-piercing riveting process—SPR," Archives of Civil and Mechanical Engineering, vol. 8, no. 2, pp. 21-30, 2008.
[13] N. Karathanasopoulos, K. S. Pandya, and D. Mohr, "An experimental and numerical investigation of the role of rivet and die design on the self-piercing riveting joint characteristics of aluminum and steel sheets," Journal of Manufacturing Processes, vol. 69, pp. 290-302, 2021.
[14] R. Porcaro, A. Hanssen, M. Langseth, and A. Aalberg, "Self-piercing riveting process: An experimental and numerical investigation," Journal of Materials Processing Technology, vol. 171, no. 1, pp. 10-20, 2006.
[15] A. Rusia and S. Weihe, "Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength," Journal of Manufacturing Processes, vol. 57, pp. 519-532, 2020.
[16] R. A. Yildiz and S. Yilmaz, "Stress–strain properties of artificially aged 6061 Al alloy: experiments and modeling," Journal of Materials Engineering and Performance, vol. 29, pp. 5764-5775, 2020.
[17] Y.-K. Lin, K.-M. Hsu, and P.-K. Lee, "The application of flow stress model to sheet metal forming simulation," China steel technical report, vol. 23, pp. 31-35, 2010.
[18] C. M. Poulin, S. C. Vogel, Y. P. Korkolis, B. L. Kinsey, and M. Knezevic, "Experimental studies into the role of cyclic bending during stretching of dual-phase steel sheets," International Journal of Material Forming, vol. 13, pp. 393-408, 2020.
[19] Y. Sun, V. Luzin, Y. Duan, R. Varma, L. Shi, and M. Weiss, "Forming-induced residual stress and material properties of roll-formed high-strength steels," Automotive Innovation, vol. 3, pp. 210-220, 2020.
[20] Y. Sun, K. Wang, D. J. Politis, G. Chen, and L. Wang, "An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process," Journal of Materials Processing Technology, vol. 275, p. 116387, 2020.
[21] N. Karathanasopoulos, K. S. Pandya, and D. Mohr, "Self-piercing riveting process: prediction of joint characteristics through finite element and neural network modeling," Journal of Advanced Joining Processes, vol. 3, p. 100040, 2021.
[22] H. K. Kim, S. Oh, K.-H. Cho, D.-H. Kam, and H. Ki, "Deep-learning approach to the self-piercing riveting of various combinations of steel and aluminum sheets," IEEE Access, vol. 9, pp. 79316-79325, 2021.
[23] H. Zhao, L. Han, Y. Liu, and X. Liu, "Quality prediction and rivet/die selection for SPR joints with artificial neural network and genetic algorithm," Journal of Manufacturing Processes, vol. 66, pp. 574-594, 2021.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明