博碩士論文 110323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.145.63.7
姓名 沈秉勤(SHEN, PING-CHIN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用液滴進行選擇性區域無電沉積及金屬輔助化學蝕刻之研究
(Research of Selective Regional Electroless Deposition and Metal-Assisted Chemical Etching Using Droplet Method)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-20以後開放)
摘要(中) 多孔矽(Porous Silicon)由於其高比表面積和生物相容性,廣泛應用於奈米科技領域的材料。然而,其製造過程存在成本高昂、區域控制難度高、效率低下等問題。本實驗以金屬輔助化學蝕刻這個多孔矽製造中成本相對低廉的製造方法為著眼點,並以無電沉積這個金屬沉積方式進行改良,融合了無電沉積和液滴沉積技術,以實現簡單且迅速的區域沉積,同時降低了製程成本。深入研究影響液滴無電沉積的各種參數之間的關聯性,這有助於優化製程,找出適合不同情況下使用的參數。再將液滴沉積技術擴展到金屬輔助化學蝕刻製程,以實現更加簡便和高效的區域蝕刻,提高製程的靈活性。最重要的是,我們以此尋求創造多孔矽的圖案化可能性,希望面向更廣泛的應用領域。
摘要(英) Porous Silicon is widely used as a material in the field of nanotechnology due to its high specific surface area and biocompatibility. However, the manufacturing process of porous silicon is characterized by high cost, difficult area control, and low efficiency. In this experiment, we focused on metal-assisted chemical etching, a relatively low-cost method for porous silicon fabrication, and enhanced electroless deposition, a metal deposition method, by combining electroless deposition and droplet deposition to realize simple and fast regional deposition while reducing the cost of the process. An in-depth study of the correlation between the various parameters affecting droplet electroless deposition helps to optimize the process and find the right parameters for different situations. We then extend the droplet deposition process to metal-assisted chemical etching processes to enable easier and more efficient area etching and to increase process flexibility. Most importantly, we are looking for the possibility of creating patterned porous silicon for a wider range of applications.
關鍵字(中) ★ 無電沉積
★ 金屬輔助化學蝕刻
★ 液滴沉積
★ 多孔矽
關鍵字(英) ★ electroless deposition
★ metal-assisted chemical etching
★ droplet deposition
★ porous silicon
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1-1 多孔矽 1
1-2 金屬輔助化學蝕刻 2
1-3 無電沉積 5
1-4 圖型化製作 7
1-5 研究動機 8
第二章 實驗內容 9
2-1 實驗材料與設備 9
2-1-1 實驗材料與化學品 9
2-1-2 實驗設備 9
2-2 實驗方法 10
2-2-1 多孔矽製備 10
2-2-2 接觸角量測 13
2-2-3 表面形貌量測 13
第三章 問題與討論 14
3-1 液滴無電沉積 14
3-1-1 金屬離子濃度對液滴沉積之影響 16
3-1-2 氫氟酸濃度對液滴沉積之影響 26
3-1-3 溫度對液滴沉積之影響 31
3-1-4 沉積時間對液滴沉積之影響 38
3-1-5 液滴量與金屬沉積面積大小之關係 42
3-2 液滴金屬輔助化學蝕刻 44
3-3 圖型化沉積蝕刻 48
第四章 結論 52
參考文獻 56
參考文獻 1. Arshavsky-Graham, S., N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici and E. Segal (2017). "On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors." ACS Sensors 2(12): 1767-1773.
2. Duan, W., X. Liu, J. Zhao, Y. Zheng and J. Wu (2022). "Porous Silicon Carrier Endowed with Photothermal and Therapeutic Effects for Synergistic Wound Disinfection." ACS Applied Materials & Interfaces 14(43): 48368-48383.
3. Tsao, C.-W. and Z.-J. Yang (2015). "High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis." ACS Applied Materials & Interfaces 7(40): 22630-22637.
4. Wang, X., F. Teng, Y. Wang and N. Lu (2019). "Rapid liquid-phase microextraction of analytes from complex samples on superwetting porous silicon for onsite SALDI-MS analysis." Talanta 198: 63-70.
5. Tsao, C.-W., Y.-S. Zheng, Y.-S. Sun and Y.-C. Cheng (2021). "Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate." Analyst 146(24): 7645-7652.
6. Romano, L., J. Vila-Comamala, K. Jefimovs and M. Stampanoni (2020). "High-Aspect-Ratio Grating Microfabrication by Platinum-Assisted Chemical Etching and Gold Electroplating." Advanced Engineering Materials 22(10): 2000258.
7. Al-Douri, Y., N. Badi and C. H. Voon (2017). "Etching time effect on optical properties of porous silicon for solar cells fabrication." Optik 147: 343-349.
8. Mendoza-Agüero, N., V. Agarwal, H. I. Villafán-Vidales, J. Campos-Alvarez and P. J. Sebastian (2015). "A heterojunction based on macro-porous silicon and zinc oxide for solar cell application." Journal of New Materials for Electrochemical Systems 18(4): 225-230.
9. Han, X., Z. Zhang, S. Chen and Y. Yang (2020). "Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy storage." Journal of Power Sources 463: 228245.
10. Chen, Q., H. Wang, H. Gao, X. Wang and B. Ma (2022). "Effects of porous silicon carbide supports prepared from pyrolyzed precursors on the thermal conductivity and energy storage properties of paraffin-based composite phase change materials." Journal of Energy Storage 56: 106046.
11. Hwang, N. M., W. S. Cheong, D. Y. Yoon and D.-Y. Kim (2000). "Growth of silicon nanowires by chemical vapor deposition: approach by charged cluster model." Journal of Crystal Growth 218(1): 33-39.
12. Hainey, M., S. M. Eichfeld, H. Shen, J. Yim, M. R. Black and J. M. Redwing (2015). "Aluminum-Catalyzed Growth of ‹110› Silicon Nanowires." Journal of Electronic Materials 44(5): 1332-1337.
13. Smyrnakis, A., E. Almpanis, V. Constantoudis, N. Papanikolaou and E. Gogolides (2015). "Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance." Nanotechnology 26(8): 085301.
14. Refino, A. D., N. Yulianto, I. Syamsu, A. P. Nugroho, N. H. Hawari, A. Syring, E. Kartini, F. Iskandar, T. Voss, A. Sumboja, E. Peiner and H. S. Wasisto (2021). "Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode." Scientific Reports 11(1): 19779.
15. Santos, A. and T. Kumeria (2015). Electrochemical Etching Methods for Producing Porous Silicon. Electrochemically Engineered Nanoporous Materials: Methods, Properties and Applications. D. Losic and A. Santos. Cham, Springer International Publishing: 1-36.
16. Vinzons, L. U., L. Shu, S. Yip, C.-Y. Wong, L. L. H. Chan and J. C. Ho (2017). "Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching." Nanoscale Research Letters 12(1): 385.
17. Dimova-Malinovska, D., M. Sendova-Vassileva, N. Tzenov and M. Kamenova (1997). "Preparation of thin porous silicon layers by stain etching." Thin Solid Films 297(9-12).
18. Li, X. and P. W. Bohn (2000). "Metal-assisted chemical etching in HF/H2O2 produces porous silicon." Applied Physics Letters 77(16): 2572-2574.
19. Tsujino, K. and M. Matsumura (2005). "Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst." Electrochemical and Solid-State Letters 8(12): C193.
20. Fang, H., Y. Wu, J. Zhao and J. Zhu (2006). "Silver catalysis in the fabrication of silicon nanowire arrays." Nanotechnology 17(15): 3768-3774.
21. Huang, Z., H. Fang and J. Zhu (2007). "Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density." Advanced Materials 19(5): 744-748.
22. Harada, Y., X. Li, P. W. Bohn and R. G. Nuzzo (2001). "Catalytic Amplification of the Soft Lithographic Patterning of Si. Nonelectrochemical Orthogonal Fabrication of Photoluminescent Porous Si Pixel Arrays." Journal of the American Chemical Society 123(36): 8709-8717.
23. Djokić, S. S. and P. L. Cavallotti (2010). Electroless Deposition: Theory and Applications. Electrodeposition: Theory and Practice. S. S. Djokic. New York, NY, Springer New York: 251-289.
24. Sayed, S. Y., F. Wang, M. Malac, A. Meldrum, R. F. Egerton and J. M. Buriak (2009). "Heteroepitaxial Growth of Gold Nanostructures on Silicon by Galvanic Displacement." ACS Nano 3(9): 2809-2817.
25. Tsao, C.-W., Z.-J. Yang and C.-W. Chung (2012). "Preparation of nanostructured silicon surface for mass spectrometry analysis by an all-wet fabrication process using electroless metal deposition and metal assisted etching." International Journal of Mass Spectrometry 321-322: 8-13.
26. Yae, S., Y. Morii, N. Fukumuro and H. Matsuda (2012). "Catalytic activity of noble metals for metal-assisted chemical etching of silicon." Nanoscale Research Letters 7(1): 352.
27. Liu, B. H., F.-Y. Liao and J.-H. Chen (2013). "Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices." Thin Solid Films 537: 263-268.
28. Gentile, F., M. Laura Coluccio, P. Candeloro, M. Barberio, G. Perozziello, M. Francardi and E. Di Fabrizio (2014). "Electroless deposition of metal nanoparticle clusters: Effect of pattern distance." Journal of Vacuum Science & Technology B 32(3).
29. Ulapane, S. B., N. J. B. Kamathewatta, H. M. Ashberry and C. L. Berrie (2019). "Controlled Electroless Deposition of Noble Metals on Silicon Substrates Using Self-Assembled Monolayers as Molecular Resists To Generate Nanopatterned Surfaces for Electronics and Plasmonics." ACS Applied Nano Materials 2(11): 7114-7125.
30. Xomalis, A., C. Hain, A. Groetsch, F. F. Klimashin, T. Nelis, J. Michler and J. Schwiedrzik (2023). "Resist-Free E-beam Lithography for Patterning Nanoscale Thick Films on Flexible Substrates." ACS Applied Nano Materials 6(5): 3388-3394.
31. Shah, M. A., D. G. Lee, B. Y. Lee and S. Hur (2021). "Classifications and Applications of Inkjet Printing Technology: A Review." IEEE Access 9: 140079-140102.
32. Zou, W., H. Yu, P. Zhou and L. Liu (2019). "Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition." Materials & Design 166: 107609.
33. Fang, J., H. You, P. Kong, Y. Yi, X. Song and B. Ding (2007). "Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction." Crystal Growth & Design 7(5): 864-867.
34. Gentile, F., M. L. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro and E. Di Fabrizio (2012). "Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach." Microelectronic Engineering 98: 359-362.
35. Milazzo, R. G., A. M. Mio, G. D’Arrigo, E. Smecca, A. Alberti, G. Fisichella, F. Giannazzo, C. Spinella and E. Rimini (2017). "Influence of hydrofluoric acid treatment on electroless deposition of Au clusters." Beilstein Journal of Nanotechnology 8: 183-189.
36. Nagahara, L. A., T. Ohmori, K. Hashimoto and A. Fujishima (1993). "Effects of HF solution in the electroless deposition process on silicon surfaces." Journal of Vacuum Science & Technology A 11(4): 763-767.
37. Anyfantakis, M., Z. Geng, M. Morel, S. Rudiuk and D. Baigl (2015). "Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions." Langmuir 31(14): 4113-4120.
38. Hu, Y., C. Jin, Y. Liu, X. Yang, Z. Liao, B. Zhang, Y. Zhou, A. Chen, L. Wu, J. Liu and K. Peng (2021). "Metal Particle Evolution Behavior during Metal Assisted Chemical Etching of Silicon." ECS Journal of Solid State Science and Technology 10(8): 084002.
指導教授 曹嘉文(Tsao, Chia-Wen) 審核日期 2023-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明