博碩士論文 110323053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.216.123.120
姓名 莊佳洋(ZHUANG JIA YANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
(Using low-damaged plasma modification to improving electrical transport properties of two-dimensional-based transistors.)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 延續摩爾定律(Moore′s Law)的發展,半導體尺寸不斷萎縮下,開始產生許多靜電效應、短通道效應、高功耗及高接觸阻抗等等問題,尤其是在矽的電傳輸特性上,隨著尺寸不斷縮小,載子遷移率(Carrier mobility)也會急遽下降,為了改善其問題,其中在二維(Two-dimensional, 2D)材料的優點為表面沒有懸鍵,因此在尺寸不斷萎縮下,並不會對導致遷移率下降,其中二維材料以過渡金屬硫化物(Transition metal dichalcogenides, TMDCs)擁有適當能隙及良好傳輸特性等而受到關注。
然而在電晶體上由於金屬與半導體材料接觸時會產生MIS(Metal−insulator−
semiconductor)費米能階高度差,當電子要穿隧時會產生蕭特基能障(Schottky barrier),為了改善其接觸阻抗,因此出現了相位工程(Phase engineering)、邊角接觸(Edge contact)、嵌入緩衝層(Inserting buffer layer)、凡德瓦接觸(Van der waals)、間隙狀態飽和(Gap-state saturation, GSS)、分子或化學摻雜(Molecular/chemical doping),雖然以上方法大多具有不穩定性或金屬熔點太低會對後段半導體造成擴散等問題。
本研究首先研究MoS2的合成與轉印參數的優化並以基礎元件作為驗證,接著聚焦於利用氫電漿對MoS2表面進行低損傷轟擊,並對上層表面的硫剝除,此時讓裸露出來的Mo直接與後續沉積的金屬直接接觸,讓金屬與金屬接觸以改善接觸阻抗,其中使用拉曼(Raman)、光致發光(Photoluminescene, PL)光譜進參數測試,在MoS2主要峰值為E2g及A1g,在電漿處理20分鐘時,其特徵峰會消失,並且未發現J1、J2、J3峰值,因此證明不是相轉變,而從X射線光電子能譜儀(X-ray photoelectron spectroscope, XPS)中可以發現從原本S/Mo比從2降至1.02,並利用原子力顯微鏡(Atomic force microscope, AFM)進行厚度量測發現從原本1.264nm降至0.654 nm,證明此實驗成功地達到選擇性上層硫原子的剝除。
此外,也針對SnS2進行討論,氫電漿剝除上層硫再加熱硒粉進行硒化,使用Raman進行參數測驗及分析,當SnS2的A1g與SnSe2的A1g在等高狀態為我們所要的SnSSe的材料,後續使用XPS證明其表面元素比例變化,Sn:S從1:1.74到進行硒化後Sn:S:Se為1:0.88:0.79,在開爾文探針力顯微鏡(Kelvin probe force microscope, KPFM)上兩者分別為5.269 eV、5.145 eV,最終以AFM驗證上此方法可成功將多層SnS2減薄成雙層厚度並進行硒化,而獲得SnSSe,並研究其電傳輸特性特性,可提升載子遷移率與N型摻雜。
摘要(英) With the continuous development of Moore′s Law, the shrinking size of semiconductors has brought about various challenges such as electrostatic effects, short-channel effects, high power consumption, and high contact impedance. Particularly in silicon, the electrical transport properties are affected as the size decreases, leading to a significant drop in carrier mobility. To address these issues, the advantages of two-dimensional (2D) materials come into play. One of the key advantages of 2D materials is the absence of dangling bonds on their surfaces, which allows for better preservation of carrier mobility as the size decreases. Among 2D materials, transition metal dichalcogenides (TMDCs) have gained significant attention due to their suitable bandgaps and excellent transmission characteristics.
However, in transistors, when metal comes into contact with semiconductor materials, there is a Fermi level offset in the MIS (Metal-Insulator-Semiconductor) structure, resulting in a Schottky barrier when electrons tunnel across. To improve the contact impedance, various methods have emerged, including phase engineering, edge contact, inserting buffer layers, Van der Waals contacts, gap-state saturation (GSS), and molecular or chemical doping. However, most of these methods suffer from instability issues or low metal melting points that can lead to diffusion problems in the subsequent semiconductor layers.
In this research, the synthesis and transfer parameters of MoS2 were first investigated and verified using basic devices. The focus then shifted to the use of hydrogen plasma for low-damage bombardment of the MoS2 surface and the removal of the sulfur layer on the surface. This exposed the Mo surface, which directly contacts the subsequently deposited metal, improving the contact impedance. Raman spectroscopy and photoluminescence (PL) spectroscopy were used for parameter testing. The main peaks in MoS2 were identified as E2g and A1g. After 20 minutes of plasma treatment, these characteristic peaks disappeared, and no J1, J2, or J3 peaks were observed, indicating that no phase transition occurred. X-ray photoelectron spectroscopy (XPS) revealed a decrease in the S/Mo ratio from the original 2 to 1.02, and atomic force microscopy (AFM) measurements showed a reduction in thickness from 1.264 nm to 0.654 nm. These results confirm the successful selective removal of the upper layer of sulfur atoms in this experiment.
In addition, SnS2 was also discussed in this study. The upper layer of sulfur was removed using hydrogen plasma, followed by annealing with selenium powder for selenization. Raman spectroscopy was used for parameter testing and analysis. When the A1g peaks of SnS2 and SnSe2 overlapped, it indicated the formation of the desired material, SnSSe. X-ray photoelectron spectroscopy (XPS) was used to confirm the changes in surface element ratios. The Sn:S ratio changed from 1:1.74 to 1:0.88:0.79 (Sn:S:Se) after selenization. Kelvin probe force microscopy (KPFM) measurements showed the respective work function values of 5.269 eV and 5.145 eV for SnS2 and SnSSe. Finally, atomic force microscopy (AFM) was employed to verify that this method successfully reduced the thickness of multilayer SnS2 to bilayer and achieved selenization, resulting in SnSSe. The electrical transport characteristics of SnSSex were studied, showing improved carrier mobility and N-type doping.
關鍵字(中) ★ 電漿改質
★ 二維材料
關鍵字(英) ★ plasma modification
★ two dimensional material
論文目次 目錄
學位論文授權書 i
學位論文延後公開申請書 ii
指導教授推薦信 iii
中文摘要 iv
Abstract vi
致謝 viii
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧 3
2-1 奈米材料(Nanomaterials) 3
2-2 二維材料的發展與應用(2D material development and application) 5
2-2-1 石墨烯(Graphene) 6
2-2-2 六方氮化硼(Hexagonal boron nitride, H-BN) 6
2-2-3 單元素材料(Monoelemental materials, Xenes) 7
2-2-4 過渡金屬硫屬化合物(Transition metal dichalcogenides, TMDCs) 9
2-2-5 二硫化錫(SnS2) 9
2-2-6 二硫化鉬(MoS2) 10
2-3 拉曼光譜分析 13
2-3-1 石墨烯拉曼光譜 13
2-3-2 MoS2拉曼光譜 14
2-3-3 SnS2拉曼光譜 16
2-4 TMDCs合成方法 17
2-4-1 MBE分子束磊晶法(Molecular beam epitaxy, MBE) 17
2-4-2 化學氣相沉積(Chemical vapor deposition, CVD) 18
2-4-3 有機金屬化學氣相沉積(Metal organic chemical vapor deposition, MOCVD) 19
2-5 電晶體效能提升方法 20
2-5-1 通道尺寸(Channel) 20
2-5-2 介電層(Gate dielectric) 21
2-5-3 基板(Substrate) 21
2-5-4 接觸阻抗(Contact) 22
2-6 電子元件分析 22
2-7 費米能階釘扎效應(Fermi-level pinning effect, FLP) 24
2-8 減少費米能階釘扎效應方法 26
2-8-1 晶相調控(Phase engineering) 26
2-8-2 邊角接觸(Edge contact) 27
2-8-3 嵌入緩衝層(Inserting buffer layer) 28
2-8-4 凡德瓦接觸(Van der waals contacts) 29
2-8-5 間隙狀態飽和(Gap-state saturation, GSS) 30
2-8-6 分子或化學摻雜(Molecular/chemical doping) 31
第三章 研究動機 33
3-1 MoS2成長可控性調整 33
3-2 濕式轉印蝕刻液 33
3-3 低損傷電漿處理以調整MoS2材料之電性 33
3-4 低損傷電漿處理以調制SnS2材料之電性 34
第四章、研究架構與流程 36
4-1 研究架構與實驗方法 36
4-2 實驗藥品及儀器 38
4-2-1 實驗藥品 38
4-2-2 實驗設備 39
4-2-3 分析設備 40
4-3 成長流程 42
4-4 轉印流程 42
4-5 元件製作流程 43
4-6 二硫化鉬之電漿處理之設備與製程 44
4-7 二硫化錫電漿處理之設備與製程 45
第五章 結果與討論 46
5-1 成長參數調整及分析 46
5-2 轉印蝕刻液影響 49
5-2-1 氫氧化鈉與氨水表面形貌、Raman及PL 49
5-2-2 氫氧化鈉與氨水對於電性的影響 50
5-3 低損傷下電漿Janus MoS2製成參數及討論 50
5-3-1 電漿處理MoS2材料分析 54
5-3-2 電漿處理MoS2元件分析 57
5-3-3 電漿改質於雙層MoS2電晶體分析 59
5-4 低損傷Janus參數於SnS2製程優化討論 61
5-4-1 電漿處理SnS2材料分析 63
5-4-2 電漿處理SnS2元件分析 66
第六章 結論 67
未來工作 68
參考文獻 69
參考文獻 [1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," Version, vol. 2, p. 14, 2010.
[2] T. N. Theis and P. M. Solomon, "It’s time to reinvent the transistor!," Science, vol. 327, no. 5973, pp. 1600-1601, 2010.
[3] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, "Promises and prospects of two-dimensional transistors," Nature, vol. 591, no. 7848, pp. 43-53, 2021.
[4] Y. Shi et al., "Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition," Nano letters, vol. 10, no. 10, pp. 4134-4139, 2010.
[5] Y. H. Lee et al., "Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition," Advanced materials, vol. 24, no. 17, pp. 2320-2325, 2012.
[6] J.-K. Huang et al., "Large-area synthesis of highly crystalline WSe2 monolayers and device applications," ACS nano, vol. 8, no. 1, pp. 923-930, 2014.
[7] X. Li et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[8] M. Moore, "International roadmap for devices and systems," Accessed: Jan, 2020.
[9] M. Byakodi et al., "Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing," Biosensors and Bioelectronics: X, vol. 12, p. 100284, 2022.
[10] X. Li et al., "Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics," Applied Physics Reviews, vol. 4, no. 2, p. 021306, 2017.
[11] V. Galstyan, M. P. Bhandari, V. Sberveglieri, G. Sberveglieri, and E. Comini, "Metal oxide nanostructures in food applications: Quality control and packaging," Chemosensors, vol. 6, no. 2, p. 16, 2018.
[12] S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, "Electronic transport in two-dimensional graphene," Reviews of modern physics, vol. 83, no. 2, p. 407, 2011.
[13] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of modern physics, vol. 81, no. 1, p. 109, 2009.
[14] J. Hassoun et al., "An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode," Nano letters, vol. 14, no. 8, pp. 4901-4906, 2014.
[15] R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, and H. M. Cheng, "The regulating role of carbon nanotubes and graphene in lithium‐ion and lithium–sulfur batteries," Advanced Materials, vol. 31, no. 9, p. 1800863, 2019.
[16] B. Unnikrishnan, S. Palanisamy, and S.-M. Chen, "A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite," Biosensors and Bioelectronics, vol. 39, no. 1, pp. 70-75, 2013.
[17] H.-F. Cui, W.-W. Wu, M.-M. Li, X. Song, Y. Lv, and T.-T. Zhang, "A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides," Biosensors and Bioelectronics, vol. 99, pp. 223-229, 2018.
[18] S. Das, D. Pandey, J. Thomas, and T. Roy, "The role of graphene and other 2D materials in solar photovoltaics," Advanced Materials, vol. 31, no. 1, p. 1802722, 2019.
[19] K. I. Ho et al., "One‐Step Formation of a Single Atomic‐Layer Transistor by the Selective Fluorination of a Graphene Film," Small, vol. 10, no. 5, pp. 989-997, 2014.
[20] Y. Cao et al., "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices," Nature, vol. 556, no. 7699, pp. 80-84, 2018.
[21] Y. Cao et al., "Unconventional superconductivity in magic-angle graphene superlattices," Nature, vol. 556, no. 7699, pp. 43-50, 2018.
[22] M. Batmunkh, M. Bat‐Erdene, and J. G. Shapter, "Phosphorene and phosphorene‐based materials–prospects for future applications," Advanced Materials, vol. 28, no. 39, pp. 8586-8617, 2016.
[23] K. Ba et al., "Chemical and bandgap engineering in monolayer hexagonal boron nitride," Scientific reports, vol. 7, no. 1, p. 45584, 2017.
[24] N. Kostoglou, K. Polychronopoulou, and C. Rebholz, "Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets," Vacuum, vol. 112, pp. 42-45, 2015.
[25] J. Zhang et al., "Atomically thin hexagonal boron nitride and its heterostructures," Advanced Materials, vol. 33, no. 6, p. 2000769, 2021.
[26] C. R. Dean et al., "Boron nitride substrates for high-quality graphene electronics," Nature nanotechnology, vol. 5, no. 10, pp. 722-726, 2010.
[27] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, "Phosphorene: from theory to applications," Nature Reviews Materials, vol. 1, no. 11, pp. 1-16, 2016.
[28] A. J. Mannix, Z. Zhang, N. P. Guisinger, B. I. Yakobson, and M. C. Hersam, "Borophene as a prototype for synthetic 2D materials development," Nature nanotechnology, vol. 13, no. 6, pp. 444-450, 2018.
[29] A. K. Tareen, K. Khan, M. Aslam, H. Zhang, and X. Liu, "Recent progress, challenges, and prospects in emerging group-via xenes: Synthesis, properties and novel applications," Nanoscale, vol. 13, no. 2, pp. 510-552, 2021.
[30] N. R. Glavin et al., "Emerging applications of elemental 2D materials," Advanced Materials, vol. 32, no. 7, p. 1904302, 2020.
[31] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, no. 1, pp. 1-14, 2015.
[32] R. Dong and I. Kuljanishvili, "Progress in fabrication of transition metal dichalcogenides heterostructure systems," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 35, no. 3, p. 030803, 2017.
[33] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, no. 3, pp. 147-150, 2011/03/01 2011, doi: 10.1038/nnano.2010.279.
[34] L. Wang et al., "Single-and few-layer 2H-SnS2 and 4H-SnS2 nanosheets for high-performance photodetection," Chinese Chemical Letters, vol. 33, no. 5, pp. 2611-2616, 2022.
[35] J. M. Gonzalez and I. I. Oleynik, "Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials," Physical Review B, vol. 94, no. 12, p. 125443, 2016.
[36] Y. Sun et al., "Freestanding tin disulfide single‐layers realizing efficient visible‐light water splitting," Angewandte Chemie International Edition, vol. 51, no. 35, pp. 8727-8731, 2012.
[37] J. Yu, A. A. Suleiman, Z. Zheng, X. Zhou, and T. Zhai, "Giant‐Enhanced SnS2 Photodetectors with Broadband Response through Oxygen Plasma Treatment," Advanced Functional Materials, vol. 30, no. 24, p. 2001650, 2020.
[38] M. Li et al., "One-step CVD fabrication and optoelectronic properties of SnS2/SnS vertical heterostructures," Inorganic Chemistry Frontiers, vol. 5, no. 8, pp. 1828-1835, 2018.
[39] Y. Jiang, M. Wei, J. Feng, Y. Ma, and S. Xiong, "Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets," Energy & Environmental Science, vol. 9, no. 4, pp. 1430-1438, 2016.
[40] T.-J. Kim, C. Kim, D. Son, M. Choi, and B. Park, "Novel SnS2-nanosheet anodes for lithium-ion batteries," Journal of Power Sources, vol. 167, no. 2, pp. 529-535, 2007.
[41] S. Bai et al., "Unravelling the regulating role of stacking pattern on the tunable dipole, mechanical behavior and carrier mobility for asymmetric Janus SnSSe bilayer," Materials Today Communications, vol. 33, p. 104191, 2022.
[42] M. S. Sokolikova and C. Mattevi, "Direct synthesis of metastable phases of 2D transition metal dichalcogenides," Chemical Society Reviews, vol. 49, no. 12, pp. 3952-3980, 2020.
[43] R. Kappera et al., "Phase-engineered low-resistance contacts for ultrathin MoS2 transistors," Nature materials, vol. 13, no. 12, pp. 1128-1134, 2014.
[44] J. Zhu et al., "Argon plasma induced phase transition in monolayer MoS2," Journal of the American Chemical Society, vol. 139, no. 30, pp. 10216-10219, 2017.
[45] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, "3R phase of MoS2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution," Chemical Communications, vol. 53, no. 21, pp. 3054-3057, 2017.
[46] A.-Y. Lu et al., "Janus monolayers of transition metal dichalcogenides," Nature nanotechnology, vol. 12, no. 8, pp. 744-749, 2017.
[47] N. Zhao and U. Schwingenschlögl, "Dipole-induced Ohmic contacts between monolayer Janus MoSSe and bulk metals," npj 2D Materials and Applications, vol. 5, no. 1, p. 72, 2021.
[48] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics reports, vol. 473, no. 5-6, pp. 51-87, 2009.
[49] S. Mouri, Y. Miyauchi, and K. Matsuda, "Tunable photoluminescence of monolayer MoS2 via chemical doping," Nano letters, vol. 13, no. 12, pp. 5944-5948, 2013.
[50] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A. Z. Moshfegh, "Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives," Nanoscale Horizons, vol. 3, no. 2, pp. 90-204, 2018.
[51] A. Y. Lu et al., "Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine‐Learning Models," Advanced Materials, vol. 34, no. 34, p. 2202911, 2022.
[52] M. W. Iqbal, K. Shahzad, R. Akbar, and G. Hussain, "A review on Raman finger prints of doping and strain effect in TMDCs," Microelectronic Engineering, vol. 219, p. 111152, 2020.
[53] B. Chakraborty, A. Bera, D. Muthu, S. Bhowmick, U. V. Waghmare, and A. Sood, "Symmetry-dependent phonon renormalization in monolayer MoS2 transistor," Physical Review B, vol. 85, no. 16, p. 161403, 2012.
[54] S. Cortijo-Campos, C. Prieto, and A. De Andrés, "Size effects in single-and few-layer MoS2 nanoflakes: impact on Raman phonons and photoluminescence," Nanomaterials, vol. 12, no. 8, p. 1330, 2022.
[55] V. K. Kumar, S. Dhar, T. H. Choudhury, S. Shivashankar, and S. Raghavan, "A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2," Nanoscale, vol. 7, no. 17, pp. 7802-7810, 2015.
[56] W.-H. Chang et al., "Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors," Nanoscale Horizons, vol. 7, no. 12, pp. 1533-1539, 2022.
[57] S. Sun et al., "Defect-Rich Monolayer MoS2 as a Universally Enhanced Substrate for Surface-Enhanced Raman Scattering," Nanomaterials, vol. 12, no. 6, p. 896, 2022.
[58] Y. Wang, C. Cong, C. Qiu, and T. Yu, "Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain," small, vol. 9, no. 17, pp. 2857-2861, 2013.
[59] J. W. Christopher, B. B. Goldberg, and A. K. Swan, "Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra," Scientific reports, vol. 7, no. 1, p. 14062, 2017.
[60] K. M. McCreary, A. T. Hanbicki, S. V. Sivaram, and B. T. Jonker, "A-and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers," Apl Materials, vol. 6, no. 11, 2018.
[61] Z. Li et al., "Efficient strain modulation of 2D materials via polymer encapsulation," Nature communications, vol. 11, no. 1, p. 1151, 2020.
[62] M. Li et al., "P-type doping in large-area monolayer MoS2 by chemical vapor deposition," ACS applied materials & interfaces, vol. 12, no. 5, pp. 6276-6282, 2020.
[63] J. Xu and D. Ho, "Modulation of the Reaction Mechanism via S/Mo: A Rational Strategy for Large-Area MoS2 Growth," Chemistry of Materials, vol. 33, no. 9, pp. 3249-3257, 2021.
[64] P. Tummala, A. Lamperti, M. Alia, E. Kozma, L. G. Nobili, and A. Molle, "Application-oriented growth of a molybdenum disulfide (MoS2) single layer by means of parametrically optimized chemical vapor deposition," Materials, vol. 13, no. 12, p. 2786, 2020.
[65] T. Chiawchan, H. Ramamoorthy, K. Buapan, and R. Somphonsane, "CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor," Nanomaterials, vol. 11, no. 10, p. 2642, 2021.
[66] P.-C. Shen et al., "Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition," Nature Electronics, vol. 5, no. 1, pp. 28-36, 2022.
[67] Q. Wang et al., "Wafer-scale highly oriented monolayer MoS2 with large domain sizes," Nano Letters, vol. 20, no. 10, pp. 7193-7199, 2020.
[68] M.-W. Chen et al., "Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy," ACS nano, vol. 11, no. 6, pp. 6355-6361, 2017.
[69] J. H. Park et al., "Synthesis of high‐performance monolayer molybdenum disulfide at low temperature," Small Methods, vol. 5, no. 6, p. 2000720, 2021.
[70] Y. Lin et al., "Contact Engineering for High-Performance N-Type 2D Semiconductor Transistors," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 37.2. 1-37.2. 4.
[71] W. Li et al., "Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices," Nature Electronics, vol. 2, no. 12, pp. 563-571, 2019.
[72] L. Liao et al., "High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors," Proceedings of the national academy of sciences, vol. 107, no. 15, pp. 6711-6715, 2010.
[73] J. R. D. Retamal, D. Periyanagounder, J.-J. Ke, M.-L. Tsai, and J.-H. He, "Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides," Chemical science, vol. 9, no. 40, pp. 7727-7745, 2018.
[74] P.-C. Shen et al., "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, vol. 593, no. 7858, pp. 211-217, 2021.
[75] S. B. Mitta et al., "Electrical characterization of 2D materials-based field-effect transistors," 2D Materials, vol. 8, no. 1, p. 012002, 2020.
[76] B. Guo, L. Fang, B. Zhang, and J. R. Gong, "Graphene doping: a review," Insciences J., vol. 1, no. 2, pp. 80-89, 2011.
[77] K. Sotthewes et al., "Universal Fermi-level pinning in transition-metal dichalcogenides," The Journal of Physical Chemistry C, vol. 123, no. 9, pp. 5411-5420, 2019.
[78] X. Liu, M. S. Choi, E. Hwang, W. J. Yoo, and J. Sun, "Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects," Advanced Materials, vol. 34, no. 15, p. 2108425, 2022.
[79] S. Cho et al., "Phase patterning for ohmic homojunction contact in MoTe2," Science, vol. 349, no. 6248, pp. 625-628, 2015.
[80] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano letters, vol. 11, no. 12, pp. 5111-5116, 2011.
[81] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, "Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors," Physical Review X, vol. 4, no. 3, p. 031005, 2014.
[82] J. Xiao et al., "Record-high saturation current in end-bond contacted monolayer MoS2 transistors," Nano Research, vol. 15, no. 1, pp. 475-481, 2022.
[83] Y. Liu et al., "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, vol. 557, no. 7707, pp. 696-700, 2018.
[84] L. Liu et al., "Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors," Nature Electronics, vol. 4, no. 5, pp. 342-347, 2021.
[85] K. Andrews, A. Bowman, U. Rijal, P.-Y. Chen, and Z. Zhou, "Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer," ACS nano, vol. 14, no. 5, pp. 6232-6241, 2020.
[86] J. Jang et al., "Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors," ACS applied materials & interfaces, vol. 12, no. 4, pp. 5031-5039, 2019.
[87] Y. Wang et al., "Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors," Nature, vol. 568, no. 7750, pp. 70-74, 2019.
[88] A. Kumar et al., "Sub-200 Ω· µm alloyed contacts to synthetic monolayer MoS2," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 7.3. 1-7.3. 4.
[89] J. E. Seo, T. Das, E. Park, D. Seo, J. Y. Kwak, and J. Chang, "Polarity Control and Weak Fermi-Level Pinning in PdSe2 Transistors," ACS Applied Materials & Interfaces, vol. 13, no. 36, pp. 43480-43488, 2021.
[90] A. Rai et al., "Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation," Nano letters, vol. 15, no. 7, pp. 4329-4336, 2015.
[91] C. J. McClellan, E. Yalon, K. K. Smithe, S. V. Suryavanshi, and E. Pop, "High current density in monolayer MoS2 doped by AlOx," ACS nano, vol. 15, no. 1, pp. 1587-1596, 2021.
[92] L. Cai et al., "Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2," Nano letters, vol. 17, no. 6, pp. 3854-3861, 2017.
[93] A. Kumar, A. Tang, H.-S. P. Wong, and K. Saraswat, "Improved Contacts to Synthetic Monolayer MoS2–A Statistical Study," in 2021 IEEE International Interconnect Technology Conference (IITC), 2021: IEEE, pp. 1-3.
[94] A. Jain et al., "One-dimensional edge contacts to a monolayer semiconductor," Nano letters, vol. 19, no. 10, pp. 6914-6923, 2019.
[95] A. J. Watson, W. Lu, M. H. Guimarães, and M. Stöhr, "Transfer of large-scale two-dimensional semiconductors: challenges and developments," 2D Materials, vol. 8, no. 3, p. 032001, 2021.
[96] A. Gurarslan et al., "Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates," ACS nano, vol. 8, no. 11, pp. 11522-11528, 2014.
[97] X. Wan et al., "Synthesis and characterization of metallic Janus MoSH monolayer," ACS nano, vol. 15, no. 12, pp. 20319-20331, 2021.
[98] J. Yu et al., "Ternary SnS2–xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications," Scientific reports, vol. 5, no. 1, p. 17109, 2015.
[99] Y. Sheng et al., "A novel contact engineering method for transistors based on two-dimensional materials," Journal of Materials Science & Technology, vol. 69, pp. 15-19, 2021.
[100] X. Zhou, Q. Zhang, L. Gan, H. Li, and T. Zhai, "Large‐size growth of ultrathin SnS2 nanosheets and high performance for phototransistors," Advanced Functional Materials, vol. 26, no. 24, pp. 4405-4413, 2016.
[101] Y. Xu et al., "Interface controlled band alignment type in Janus SnS2/SSnSe and SnS2/SeSnS van der Waals heterojunctions," Vacuum, vol. 196, p. 110757, 2022.
[102] J. Liu et al., "Ag2S quantum dots in situ coupled to hexagonal SnS2 with enhanced photocatalytic activity for MO and Cr (VI) removal," RSC advances, vol. 7, no. 74, pp. 46823-46831, 2017.
[103] C. M. Avendaño et al., "Formation of SnSSe thin films by heat treatment of SnS thin films in S/Se atmosphere," Materials Research Express, vol. 6, no. 7, p. 076413, 2019.
指導教授 蘇清源(Su Ching Yuan) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明