博碩士論文 110323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.236.142.143
姓名 張益銓(I-Chuan Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微多孔表面漸擴微流道蒸發器性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了解決未來電子元件的高發熱量,本研究將微多孔表面應用到雙通漸擴微流道蒸發器上,來得到高性能的蒸發器。並與其他種蒸發器作比較,包含微多孔表面的雙通直線與單通直線微流道蒸發器,以及平滑表面的單通直線微流道蒸發器。微多孔表面由平均粉末大小16 μm的鋁粉膠黏堆疊於流道表面上平均厚度約為 50 μm。
雙通漸擴微流道蒸發器中,相較於平滑表面,微多孔表面因為增加成核孔洞的密度,增強成核沸騰,熱傳性能 較高,但因為較多的汽泡生成,流道容易堵住,使壓降一併上升,在流量100與187 ml/min,燒乾會發生在較低的加熱通率。微多孔表面能對其熱傳效果提升16% ~ 54%,同時壓降亦增加30% ~ 40%。
在雙通流道形式中,相較於直線流道漸擴流道因為第一通的尺寸較小,汽泡更易堵住,造成微多孔表面的漸擴 流道性能比直線差 。
另外將雙通與單通作比較,單通直線流道因為長度比較短所以汽泡
較不容易堵住,使性 能優於雙通的。
實際應用上,若欲用微多孔表面作增強,則可直接施加於單通直線流道上。若管路位置受限,須將入出口設置於同一側,可考慮使用多孔表面的雙通直線流道。
摘要(英) This study applies microporous surface on the two-pass divergent microchannel evaporator to obtain a high performance evaporator for solving high heat dissipation rate electronic devices in near future. The result will be compared with other evaporators, which includes single-pass and two-pass straight microchannel evaporator with microporous surface and single-pass straight microchannel evaporator with plain surface, developed by our lab. The 16 μm average size of aluminum particle is used to make the microporous surface, the average thickness is about 50 μm.
Microporous surface increases the nucleation site density, which enhances nucleate boiling and more bubbles are nucleated. While huge amount of bubble will block the channel easier, which causes the higher pressure drop and performance start decreasing at lower heat flux rate. For two-pass divergent microchannel evaporator, the heat transfer coefficient is increased 16% ~ 54% and the pressure drop is increased 30% ~ 40% when microporous surface is applied.
Comparison in two-pass channel shows that the heat transfer performance of divergent channel is worse than straight one due to the smaller size of first pass channel which will make the blockage of bubble easier. While comparing two-pass channel to single pass one, the latter one shows the better performance because of the shorter channel length.
In practice, apply microporous on single pass straight channel will yield the best performance compared to two-pass divergent and straight channel. Yet, if the inlet and outlet port are constrained to the same side, then two-pass straight channel with microporous surface will be a choice.
關鍵字(中) ★ 微多孔表面、
★ 微流道蒸發器
★ 漸擴微流道
關鍵字(英) ★ microporous surface
★ divergent microchannel
★ microchannel evaporator
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
第一章、前言 1
1.1 研究背景 1
1.1.1 回流現象 3
1.1.2 回流現象改善方法 6
1.1.2 沸騰熱傳增強方法 13
1.2 研究目的 14
第二章、文獻回顧 15
2.1 漸擴微流道蒸發器 15
2.2 微多孔表面沸騰增強 28
2.3 總結 37
第三章、研究方法 38
3.1 微多孔表面之製作 38
3.1.1 微多孔層厚度設定 43
3.1.2 噴塗參數 43
3.1.3 製作步驟 44
3.1.4 多孔層厚度測量與表面特徵 46
3.2 測試段組合 50
3.3 實驗系統及設備 52
3.3.1 加熱系統 53
3.3.2 實驗量測儀器與設備 57
3.3.3 資料擷取系統 58
3.4 實驗條件與步驟 59
3.5 實驗數據換算 60
3.5.1 系統飽和溫度 60
3.5.2 測試段加熱率 60
3.5.3 質量流率 62
3.5.4 出口乾度 62
3.5.5 測試段熱傳係數 63
3.5.6 測試段熱阻值 63
3.5.7 測試段壓降 63
3.5.7 泵動力 64
第四章、結果與討論 67
4-1 雙通形式微多孔表面蒸發器性能測試結果 67
4-1-1 熱傳測試結果 67
4-1-2 壓降測試結果 74
4-2 不同微流道蒸發器比較 80
4-2-1 多孔表面雙通形式蒸發器之比較 85
4-2-2 雙通與單通形式流道比較 85
4-2-3 各蒸發器比較 87
第五章、結論 95
參考文獻 96
附錄A、多孔層量測結果 101
附錄B、孔洞判別方法 103
附錄C、實驗誤差分析 111
附錄D、熱邊界層厚度估算 116
參考文獻 [1] IEA, <Data centers and data transmissioin networks>, 2023, 取自
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks.
[2] Parker Hannifin Corporation, <Two-phase evaporative precision cooling systems>, 取自
https://www.parker.com/content/dam/Parker-com/Literature/CIC-Group/Precision-Cooling/New-literature/Two_Phase_Evaporative_Precision_Cooling_Systems.pdf
[3] Advanced Cooling Technologies, <Pumped two-phase learning center>, 取自
https://www.1-act.com/resources/learning-center/pumped-two-phase/
[4] S. G. Kandlikar, “Nucleation characteristics and stability considerations during flow boiling in microchannels.” Experimental Thermal and Fluid Science, Vol. 30(5), 2006, pp. 441-447.
[5] J. Lee, and I. Mudawar, “Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results.” International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 4315-4326.
[6] E. M. Fayyadh, M. M. Mahmoud, K. Sefiane, and T. G. Karayiannis, “Flow boiling heat transfer of R134a in multi microchannels.” International Journal of Heat and Mass Transfer, Vol. 110, 2017, pp. 422-436.
[7] W. Qu, and I. Mudawar, “Flow boiling heat transfer in two-phase micro-channel heat sinks-I. Experimental investigation and assessment of correlation methods.” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2755-2771.
[8] B. Markal, O. Aydin, and M. Avci, “Effect of hydraulic diameter on flow boiling in rectangular microchannels.” Heat ans Mass Transfer, Vol. 46, 2018, pp. 2755-2771.
[9] A. Kosar, C. J. Kuo, and Y. Peles, “Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors.” Journal of Heat Transfer, Vol. 128(3), 2006, pp. 251-260.
[10] M. Law, and P. S. Lee, Karthik Balasubramanian, “Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels.” International Journal of Heat and Mass Transfer, Vol. 76, 2014, pp. 419-431.
[11] M. Law, and P. S. Lee, “A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels.” International Journal of Heat and Mass Transfer, Vol. 85, 2015, pp. 797-810.
[12] K. F. Sung, C. H. Hsu, and C. Y. Yang, “Development of heat exchanger with two-pass diverging microchannels for evaporation cooling systems.” Journal of Enhanced Heat Transfer, Vol. 31(2), 2024, pp. 1-19.
[13] 劉建富:<狹小空間內微多孔表面之蒸發熱傳性能研究>,博士論文,國立中央大學機械工程研究所,102年6月。
[14] P. Lee, and C. Pan, “Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section.” Journal of Micromechanics and Microengineering, Vol. 18(2), 2008, 025005
[15] C. Lu, and C. Pan, “Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design.” Journal of Micromechanics and Microengineering, Vol. 18(7), 2008, 075035.
[16] K. Balasubramanian, P. S. Lee, L. W. Jin, S. K. Chou, C. J. Teo, and S. Gao, “Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels – A comparative study.” International Journal of Thermal Sciences, Vol. 50(12), 2011, pp. 2413-2421.
[17] S. G. Kandlikar, “Enhanced flow boilingover open microchannels with uniform and tapered gap manifolds.” Journal of Enhanced Heat Transfer, Vol. 135(6), 2013, 061401.
[18] X. Jiang, S. Y. Li, and C. Pan, “High performance heat sink with counter flow diverging microchannels.” International Journal of Heat and Mass Transfer, Vol. 162, 2020, 120344.
[19] J. G. Collier, and J. R. Thome, Convective Boiling and Condensation, Third Edition, Oxford University Press New York, 1994, Chapter 4, pp. 149-150.
[20] J. Y. Chang, and S. M. You, “Boiling heat transfer phenomena from micro-porous surfaces in saturated FC-72.” International Journal of Heat and Mass Transfer, Vol. 40, No. 18, 1997, pp. 4437-4447.
[21] P. Bai, T. Tang, and B. Tang, “Enhanced flow boiling in parallel microchannels with metallic porous coating.” Applied Thermal Engineering, Vol. 58, 2013, pp. 291-297.
[22] T. Semenic, and S. M. You, “Two-phase heat sinks with microporous coating.” Heat Transfer Engineering, Vol. 34: 2-3, 2013, pp. 246-257.
[23] D. Deng, R. Chen, Y. Tang, L. Lu, T. Zeng, and W. Wan, “A comparative study of flow boiling performance in reentrant copper microchannels and reentrant porous microchannels with multi-scale rough surface.” International Journal of Multiphase Flow, Vol. 72, 2015, pp. 275-287.
[24] B. He, X. Luo, F. Yu, J. Zhou, and J. Zhang, “Flow boiling characteristic in bi-porous minichannel heat sink sintered with copper woven tape.” International Journal of Heat and Mass Transfer, Vol. 158, 2020, 119988.
[25] V. L.S. Lee, G. Henderson, A. Reip, T. G. Karayiannis, “Flow boiling characteristics in plain and porous coated microchannel heat sinks.” International Journal of Heat and Mass Transfer, Vol. 183, 2022, 122152.
[26] K. F. Sung, I. C. Chang, C. Y. Yang, “Flow boiling heat transfer in microchannel heat exchanger with micro porous coating surface.” submitted.
[27] 許正宏:<漸擴雙通式微流道蒸發熱交換器性能研究>,碩士論文,國立中央大學機械工程研究所,111年6月。
[28] H. H. Hsu, “On the size range of active nucleation cavities on a heating surface.” Journal of Heat Transfer, Vol. 84, 1962, pp. 207-213.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明