博碩士論文 110323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:44.222.64.76
姓名 董衍辰(Yan-Chen Dong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱虹吸管電池散熱模組研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著環保意識的抬頭,再生能源將成為未來最主要的能量獲取來源之 一。 再生能源並非可以隨時取得,因此可以利用儲能系統來儲存能量, 鋰 離子電池儲能系統因而被廣泛使用。然而, 由於快速充放電的需求, 鋰離 子電池在快速放電時所產生的熱增加, 因此如何對鋰離子電池模組進行熱 管理是一個非常重要的議題。
在現今的冷卻方式中, 直接氣冷成本最低。然而其最大的問題在於其 流道複雜,電池模組壓降較大,需要更多耗能來散熱。本研究利用將熱虹 吸管插入電池模組中,將模組內的熱導出,降低直接氣冷之壓降。
根據實驗結果在風速 1.97m/s 時, 直接氣冷模組可以在 9C 放電時控制 在 60°C 以下, 而鰭管模組可以在 11C 放電時控制在 60°C 以下, 增加 1.2 倍,且使用鰭管之壓降相比於直接氣冷模組小約 6.5 倍。
使用鰭管模組風 扇僅需要 30.5Hz 就可解決 9C 放電時的熱,直接氣冷模組則需要 59.5Hz, 因此使用鰭管模組可減少因散熱所需的耗能。
摘要(英) With the rise of environmental awareness, renewable energy will become one of the primary sources of energy in the future. Since renewable energy is not always available, energy storage systems play a crucial role in storing energy. Lithium-ion battery energy storage systems are widely utilized for this purpose. However, due to the demand for fast charging and discharging, the increased heat generated during fast discharging in lithium-ion batteries has made thermal management of lithium-ion battery modules a critical issue.
Among the current cooling methods, direct air cooling has the lowest cost. However, its main issue in the complexity of its flow channels, resulting in a larger pressure drop in the battery module and requiring more energy consumption for heat dissipation. In this study, we insert thermosiphon into the battery module to export the heat inside the battery module, reducing the pressure drop associated with air cooling.
Based on the experimental results, at a frontal air velocity of 1.97m/s, the direct air cooling module can maintain temperature below 60°C during 9C discharge, while the finned-tube module can achieve the same below 60°C during 11C discharge, increase of 1.2 times. When using the finned-tube module, the fan only needs 30.5Hz to dissipate heat during 9C discharge, the direct air cooling module requires 59.5Hz. Therefore, using the finned-tube module can reduce the energy consumption required for heat dissipation.
關鍵字(中) ★ 熱虹吸管
★ 水
★ 熱阻
★ 儲能系統
★ 電池散熱模組
關鍵字(英) ★ Thermosiphon
★ Water
★ Thermal Resistance
★ Energy Storage System
★ Battery thermal management module
論文目次 摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
符號說明 x
第一章、前言 1
1.1 研究背景與動機 1
1.1.1 儲能系統 1
1.1.2 直接氣冷 4
1.1.3 水冷 6
1.1.4 相變材料(PCM) 9
1.1.5 熱管(Heat pipe) 10
1.2 研究目的 12
第二章、文獻回顧 14
2.1 兩相密閉熱虹吸管 14
2.1.1 兩相密閉熱虹吸管工作原理 14
2.1.2 運作極限 15
2.1.3 蒸發段沸騰狀態 16
2.1.4 填充率(Filling ratio) 19
2.2 改變截面形狀 20
2.2.1 扁平熱虹吸管 20
2.2.2 微熱管 21
2.3 總結 22
第三章、實驗系統與方法 23
3.1 測試段 23
3.1.1熱虹吸管製作 23
3.1.2 直接氣冷模組 24
3.1.3 扁平熱虹吸管模組 25
3.1.4 鰭管模組 26
3.2 實驗系統 30
3.2.1 加熱系統 30
3.2.2 風洞測試系統 30
3.3 實驗量測儀器及設備 31
3.3.1溫度量測 31
3.3.2 差壓量測 33
3.3.3 流量量測 33
3.3.4 加熱瓦數量測 34
3.3.5 資料擷取系統 34
3.4實驗步驟 34
3.5 數據換算 35
3.5.1 加熱瓦數 35
3.5.2 熱虹吸管熱阻 35
3.5.3 空氣側熱阻 35
3.5.4 系統總熱阻 35
3.5.5 填充率(Filling ratio) 36
第四章、結果與討論 37
4.1、熱虹吸管測試 37
4.1.1 扁平熱虹吸管測試 37
4.1.2 圓熱虹吸管測試 40
4.2 熱虹吸管模組測試及比較 41
4.2.1 扁平熱虹吸管模組測試結果 41
4.2.2 增加鰭片比較 45
4.3 直接氣冷模組測試及比較 52
4.3.1 直接氣冷模組測試 52
4.3.2 直接氣冷模組與鰭管模組相同風速比較 55
4.3.3 直接氣冷模組與鰭管模組相同頻率比較 62
4.3.4 體積增加比較 69
第五章、結論 71
參考文獻 72
附錄A、誤差分析 78
參考文獻 [1] 經濟部能源署:能源統計月報。2024年1月2日,取自https://www.esist.org.tw/newest/monthly

[2] 經濟部:能源轉型白皮書。2020年11月,取自https://energywhitepaper.tw/#/whitepaper

[3] 台灣電力公司:今日用電曲線圖。2024年1月10日,取自 https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=404&cchk=8ccc1918-8cae-4f40-a2d0-b43454f4f218

[4] H. Chen, T. N. Cong, W. Yang, C.Tan, Y. Li, Y. Ding, “Progress in electrical energy storage system: A critical review”, Progress in Natural Science, vol.19, pp.291–312, March 2009.

[5] S. Al-Hallaj, H. Maleki, J.S. Hong, J.R. Selman, “Thermal modeling and design considerations of lithium-ion batteries”, Journal of Power Sources, vol.83, pp.1–8, October 1999.

[6] NCR18650B Datasheet. 取自https://pdf1.alldatasheet.com/datasheet-pdf/view/597043/PANASONICBATTERY/NCR18650B.html

[7] NCR18650GA Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1492268/PANASONIC/NCR18650GA.html

[8] INR18650-25R Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1492277/SAMSUNG/INR18650-25R.html
[9] INR18650-30Q Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1131828/SAMSUNG/INR18650-30Q.html

[10] EVE ICR18650/20P Datasheet. 取自 https://www.endrich.com/sixcms/media.php/2/ICR18650%2020P-S02-LF%20B.pdf

[11] EVE ICR18650/25P Datasheet. 取自 https://www.imrbatteries.com/content/eve_25P.pdf

[12] EVE ICR18650/26V Datasheet. 取自 http://www.batimex.pl/zdjecia/pdf/inr18650-26v.pdf

[13] LG INR18650-F1L Datasheet. 取自 https://datasheetspdf.com/pdf-file/1265007/LG/INR18650F1L/1

[14] LG INR18650-MJ1 Datasheet. 取自 https://www.nkon.nl/sk/k/Specification%20INR18650MJ1%2022.08.2014.pdf

[15] Sony US18650VTC5A Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1222412/SONY/US18650VTC5A.html

[16] Sony US18650VTC4 Datasheet. 取自 https://www.murata.com/-/media/webrenewal/products/batteries/cylindrical/pdf-sds/us18650vtc4-sds.ashx?la=ja-jp&cvid=20210215080000000000


[17] Y. Fan, Y. Bao, C. Ling, Y. Chu, X. Tan, S. Yang, “Experimental study on the thermal management performance of air coolingfor high energy density cylindrical lithium-ion batteries”, Applied Thermal Engineering, vol.155, pp.96–109, June 2019.

[18] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies”, Applied Energy, vol.155, pp.229–238, December 2014.

[19] X. Yu, Z. Lu, L. Zhang, L. Wei, X.Cui, L. Jin, “Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy”, Applied Energy, vol.143, pp.118576, November 2019.

[20] shortword – PaulK:Tesla Model Y 電池模組。2021年10月9日。取自 https://twitter.com/shortword/status/1446781892729126915/photo/1

[21] H. Wang, T. Tao, J. Xu, X. Mei, X. Liu, G. Piao, “Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries”, Applied Thermal Engineering, vol.178, pp.115591, September 2020.

[22] Z. Rao, Y. Huo, X. Liu, G. Zhang, “Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam”, Journal of the Energy Institute, vol.88, pp.241–246, August 2015.
[23] R. Kizilel, A. Lateef, R. Sabbah, M. M. Farid, J. R. Selman, S. Al-Hallaj, “Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature”, Journal of Power Sources, vol.183, pp.370–375, August 2008.
[24] Y. Lv, X. Yang, X. Li, G. Zhang, Z. Wang, C. Yang, “Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins”, Applied Energy, vol.178, pp.376–382, September 2016.

[25] Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling”, Applied Energy, vol.148, pp.403–409, June 2015.

[26] Y. Wang, P. Peng, W. Cao, T. Dong, Y. Zheng, B. Lei, Y. Shi, Fangming Jiang, “Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module”, Applied Thermal Engineering, vol.180, pp.115772, November 2020.

[27] K. A. Joudi, A. M. Witwit, 2000, “Improvements of gravity assisted wickless heat pipes”, Energy Conversion and Management, vol.41, pp.2041–2061, December 2000.

[28] D. Jafari, A. Franco, S. Filippeschi, P. D. Marco, “Two-phase closed thermosyphons: A review of studies and solar applications”, Renewable and Sustainable Energy Reviews, vol.53, pp.575–593, January 2016.

[29] H. Kuncoro ,Y. F. Rao, K. Fukuda, “An experimental study on the mechanism of geysering in a closed two-phase thermosyphon”, International Journal of Multiphase Flow, vol.21, pp.1243–1252, November 1995.

[30] T. F. Lin, W. T. Lin, Y. L. Tsay, J. C. Wu, “Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon”, International Journal of Heat and Mass Transfer, vol.38, pp.295–307, January 1995.

[31] K. Smith, R. Kempers, A. J. Robinson, “Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part A: Flow regimes”, International Journal of Heat and Mass Transfer, vol.119, pp.907–921, April 2018.

[32] A. J. Robinsona, K. Smith, T. Hughes, S. Filippeschi, “Heat and mass transfer for a small diameter thermosyphon with low fill ratio”, International Journal of Thermofluids, vol.1–2, February 2020.

[33] S. H. Noie, “Heat transfer characteristics of a two-phase closed thermosyphon”, Applied Thermal Engineering, vol.25, pp.495–506, March 2005.

[34] Y. Kim, S. H. Shin, J. S. Kim, S. M. You, J. Lee, “Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios”, Applied Thermal Engineering, vol.145, pp.328–342, December 2018.

[35] W. Srimuang, S. Rittidech, B. Bubphachot, “Heat transfer characteristics of a vertical flat thermosyphon (VFT)”, Journal of Mechanical Science and Technology, vol.23, pp.2548–2554, September 2009.

[36] P. Amatachaya, W. Srimuang, “Comparative heat transfer characteristics of a flat two-phase closed thermosyphon”, International Communications in Heat and Mass Transfer, vol.37, pp.293–298, March 2010.

[37] G. P. Peterson, A. B. Duncan, M. H. Weichold, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers”, Journal of Heat Transfer, vol.115, pp.751–756, August 1993.

[38] G. P. Peterson, H. B. Ma, “Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipes”, Journal of Heat Transfer, vol.118, pp.731–739, August 1996.

[39] S. H. Moon, G. Hwang, S. C. Ko, Y. T. Kim, “Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon”, Microelectronics Reliability, vol.44, pp.315–321, February 2004.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明