博碩士論文 110323603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.118.152.234
姓名 吉里基(Kiran Giri)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微通道與固體表面增強拉曼光譜 (SERS) 基底的整合用於從全血中分離和檢測癌細胞
(Integration of Microchannel with Solid Surface-Enhanced Raman Spectroscopy (SERS) Substrate for Isolation and Detection of Cancer Cells from Whole Blood)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 循環腫瘤細胞(CTCs)作為液體活檢的可靠生物標誌物顯示出顯著的潛力,提供了一種微創的方法來檢測癌症並監測治療進展。然而,循環腫瘤細胞的分離和檢測仍然是一個主要挑戰。本論文將提出一種利用微通道集成表面增強拉曼散射(SERS)基板來分離和檢測癌細胞的新方法。使用微流體器件中的微柱和不同微通道內部間隙的基於大小的方法來從全血中分離癌細胞。HT-29細胞系被加入血樣中以觀察癌細胞的分離。微通道中的微流體濾波器能夠根據癌細胞與血細胞之間的大小差異從血液中分離出癌細胞。然而,微柱在微通道中導致血液顆粒與血漿分離的流動導致微通道堵塞。使用數值和實驗方法研究了微通道中微柱直徑、形狀和間隙等不同參數對血流中堵塞現象的影響。採用電化學無電鍍方法開發的固態SERS基板用於檢測細胞。集成在微通道中的SERS基板將為快速而敏感地檢測癌細胞提供可能,以用於監測癌症進展和研究對治療的反應。
摘要(英) Circulating tumor cells (CTCs) shows significant promise as reliable biomarkers through liquid biopsies, offering a minimally invasive approach for detecting cancer and monitoring therapeutic progress. However, isolation and detection of circulating tumor cells remains one of the major challenge. This thesis will present a novel method to isolate and detect cancer cells using a microchannel integrated with SERS substrate. A size-based isolation of cancer cells from whole blood using micro pillars and varying gap spacing within the microchannel of microfluidic device is developed. HT-29 cell line was spiked into the blood sample to observe isolation of cancer cells. The microfluidic filters in microchannel was able to isolate cancer cells from blood based on the size difference between cancer cells and blood cells. However, the flow of blood in microchannel with micropillar cause the separation of blood particles from the blood plasma resulting in clogging of the microchannel. The effect of different parameters such as diameter, shape and gap between micropillar in clogging phenomenon during the blood flow in the microchannel was studied using numerical and experimental method. Solid state SERS substrates developed by electroless droplet deposition method was used for detection of the cells. The SERS substrate integrated with the microchannel will provide a fast and sensitive detection of cancer cells for monitoring of cancer progression and studying the response to treatment.
關鍵字(中) ★ 循環腫瘤細胞
★ 表面增強拉曼光譜
★ 細胞分離
★ 阻塞現象
關鍵字(英) ★ Circulating tumor cells
★ Surface-enhanced Raman spectroscopy
★ Isolation of cells
★ Clogging phenomenon
論文目次 中文摘要 i
Abstract ii
Acknowledgement iii
List of Figures vi
List of Tables ix
Chapter I Introduction 1
1-1 Cancer Diagnosis 1
1-2 Circulating Tumor Cells (CTCs) 2
1-3 Microfluidics Based CTC Isolation method 3
1-4 Flow of blood through the micropillar 9
1-5 Fabrication of micropillar 10
1-6 CTC detection methods 11
1-7 SERS based CTC detection 13
1-8 SERS substrates 16
1-9 Motivation 19
Chapter II Materials and Methods 22
2-1 Modeling and Simulations 22
2-1-1 Geometry and Computational domain 22
2-1-2 Meshes Parameter 23
2-1-3 Simulation Method 24
2-2 Device design and fabrication 25
2-2-1 Design of microchannel 25
2-2-2 CNC Milling 26
2-2-3 Photolithography 27
2-2-4 Soft Lithography 28
2-3 Fabrication of SERS substrate 29
2-4 Assembly of microfluidic device 30
2-5 Experimental Setup 31
2-6 SERS Measurement 31
2-7 Blood Sample Preparation 32
2-8 HT-29 (adherent) cells preparation 32
Chapter III Results and Discussion 33
3-1 Flow Analysis of Blood in Micropillar 33
3-1-1 Flow in microchannel 33
3-1-2 Effect of diameter 37
3-1-3 Effect of shapes 39
3-1-4 Effect of gap between micropillar 41
3-1-5 Effect of Pattern 43
3-1-6 Experimental Results 44
3-2 Cancer cell isolation using microfluidic device 47
3-2-1 Characteristics of HT-29 cells 48
3-2-2 Isolation of cancer cells 49
3-2-3 Clogging of microchannel due to blood flow 51
3-2-4 Comparison of isolation results 53
3-3 Micromilling for fabrication of micropillar 54
3-4 SERS based detection of CTC cells 55
3-4-1 Fabrication of SERS substrate 55
3-4-2 Testing of SERS substrate 56
3-4-3 Detection of Cancer cells using SERS substrate 57
3-4-4 Aptamer-based sensing of cancer cells 58
Chapter IV Conclusion 61
References 64
參考文獻 1. Ferlay, J., et al., Cancer statistics for the year 2020: An overview. Int J Cancer, 2021.
2. Siegel, R.L., et al., Cancer statistics, 2022. CA Cancer J Clin, 2022. 72(1): p. 7-33.
3. Sun, Y., et al., Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta, 2018. 1012: p. 10-29.
4. Eberhardt, K., et al., Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn, 2015. 15(6): p. 773-87.
5. Lim, M., et al., Liquid Biopsy in Lung Cancer: Clinical Applications of Circulating Biomarkers (CTCs and ctDNA). Micromachines (Basel), 2018. 9(3).
6. Haber, D.A. and V.E. Velculescu, Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov, 2014. 4(6): p. 650-61.
7. Li, S.J., et al., Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cellular & Molecular Biology Letters, 2023. 28(1).
8. Neoh, K.H., et al., Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials, 2018. 150: p. 112-124.
9. Tadimety, A., et al., Advances in liquid biopsy on-chip for cancer management: Technologies, biomarkers, and clinical analysis. Crit Rev Clin Lab Sci, 2018. 55(3): p. 140-162.
10. Wu, L. and X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev, 2015. 44(10): p. 2963-97.
11. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
12. Riggi, N., M. Aguet, and I. Stamenkovic, Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. Annu Rev Pathol, 2018. 13: p. 117-140.
13. Descamps, L., D. Le Roy, and A.L. Deman, Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci, 2022. 23(4).
14. Lawrence, R., et al., Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol, 2023. 20(7): p. 487-500.
15. Zhuo Zhang, S.N., Microfluidics and cancer: are we there yet? 2013.
16. Yu, L., et al., Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip, 2013. 13(16): p. 3163-82.
17. Antfolk, M., et al., Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Sci Rep, 2017. 7: p. 46507.
18. Banko, P., et al., Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol, 2019. 12(1): p. 48.
19. Lei, K.F., A Review on Microdevices for Isolating Circulating Tumor Cells. Micromachines (Basel), 2020. 11(5).
20. Ferreira, M.M., V.C. Ramani, and S.S. Jeffrey, Circulating tumor cell technologies. Mol Oncol, 2016. 10(3): p. 374-94.
21. Allard, W.J., et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res, 2004. 10(20): p. 6897-904.
22. Wang, S., et al., Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl, 2011. 50(13): p. 3084-8.
23. Hoshino, K., et al., Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011. 11(20): p. 3449-57.
24. Besant, J.D., et al., Velocity valleys enable efficient capture and spatial sorting of nanoparticle-bound cancer cells. Nanoscale, 2015. 7(14): p. 6278-85.
25. Zhang, X., et al., A label-free microfluidic chip for the highly selective isolation of single and cluster CTCs from breast cancer patients. Transl Oncol, 2021. 14(1): p. 100959.
26. Park, E.S., et al., Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets. Small, 2016. 12(14): p. 1909-19.
27. Chen, H., et al., Author Correction: Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Sci Rep, 2018. 8(1): p. 5269.
28. Liu, Y., et al., A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Lab Chip, 2018. 19(1): p. 68-78.
29. Fan, X., et al., A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron, 2015. 71: p. 380-386.
30. Hvichia, G.E., et al., A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer, 2016. 138(12): p. 2894-904.
31. Riahi, R., et al., A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. Int J Oncol, 2014. 44(6): p. 1870-8.
32. Yagi, S., et al., Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One, 2017. 12(6): p. e0179744.
33. Loutherback, K., et al., Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv, 2012. 2(4): p. 42107.
34. Liu, Z., et al., Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. Lab Chip, 2021. 21(15): p. 2881-2891.
35. Smith, K.J., et al., Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey device for CTC enrichment. Lab Chip, 2021. 21(18): p. 3559-3572.
36. Zhou, J., et al., Isolation of cells from whole blood using shear-induced diffusion. Sci Rep, 2018. 8(1): p. 9411.
37. Kulasinghe, A., et al., Capture of Circulating Tumour Cell Clusters Using Straight Microfluidic Chips. Cancers (Basel), 2019. 11(1).
38. Hou, H.W., et al., Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep, 2013. 3: p. 1259.
39. Sollier, E., et al., Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip, 2014. 14(1): p. 63-77.
40. Dhar, M., et al., Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells. Sci Rep, 2016. 6: p. 35474.
41. Di Trapani, M., N. Manaresi, and G. Medoro, DEPArray system: An automatic image-based sorter for isolation of pure circulating tumor cells. Cytometry A, 2018. 93(12): p. 1260-1266.
42. Gupta, V., et al., ApoStream(), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 2012. 6(2): p. 24133.
43. Karthick, S., et al., Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Lab Chip, 2018. 18(24): p. 3802-3813.
44. Jack, R.M., et al., Ultra-Specific Isolation of Circulating Tumor Cells Enables Rare-Cell RNA Profiling. Adv Sci (Weinh), 2016. 3(9): p. 1600063.
45. Fachin, F., et al., Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells. Sci Rep, 2017. 7(1): p. 10936.
46. Gorges, T.M., et al., Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer, 2012. 12: p. 178.
47. Yu, M., et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013. 339(6119): p. 580-4.
48. Farace, F., et al., A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer, 2011. 105(6): p. 847-53.
49. Drucker, A., et al., Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One, 2020. 15(8): p. e0237308.
50. Taneda, S., Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers. Journal of the Physical Society of Japan, 1956. 11(10): p. 1104-1108.
51. Mule, G.M. and A.A. Kulkarni, Effect of object shape on the flow past microstructures in small channel. Fluid Dynamics Research, 2021. 53(1).
52. Gunda, N.S.K., et al., Measurement of pressure drop and flow resistance in microchannels with integrated micropillars. Microfluidics and Nanofluidics, 2012. 14(3-4): p. 711-721.
53. Jung, J., et al., The flow field around a micropillar confined in a microchannel. International Journal of Heat and Fluid Flow, 2012. 36: p. 118-132.
54. Lima, R., et al., In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices, 2008. 10(2): p. 153-67.
55. Leble, V., et al., Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics, 2011. 5(4): p. 44120-4412015.
56. Kim, J., J.F. Antaki, and M. Massoudi, Computational study of blood flow in microchannels. Journal of Computational and Applied Mathematics, 2016. 292: p. 174-187.
57. Moreau, W.M., Semiconductor Lithography. 1988.
58. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 2015. 15(11): p. 2364-78.
59. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 2020. 112(3-4): p. 655-684.
60. Javidanbardan, A., et al., A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines (Basel), 2021. 13(1).
61. Lashkaripour, A., R. Silva, and D. Densmore, Desktop micromilled microfluidics. Microfluidics and Nanofluidics, 2018. 22(3).
62. Reichenbach, I.G., et al., Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. The International Journal of Advanced Manufacturing Technology, 2018. 96(9-12): p. 3665-3677.
63. Behroodi, E., et al., A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production. Sci Rep, 2020. 10(1): p. 22171.
64. Mesquita, P., L. Gong, and Y. Lin, Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 2022. 1.
65. Lux, A., et al., Real-Time Detection of Tumor Cells during Capture on a Filter Element Significantly Enhancing Detection Rate. Biosensors (Basel), 2021. 11(9).
66. Boya, M., et al., High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells. Nat Commun, 2022. 13(1): p. 3385.
67. Ruan, Q., et al., Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Anal Chem, 2022. 94(2): p. 1108-1117.
68. Zhang, X., et al., Dual-Multivalent-Aptamer-Conjugated Nanoprobes for Superefficient Discerning of Single Circulating Tumor Cells in a Microfluidic Chip with Inductively Coupled Plasma Mass Spectrometry Detection. ACS Appl Mater Interfaces, 2021. 13(36): p. 43668-43675.
69. Ruiz-Rodriguez, A.J., et al., Deep Phenotypic Characterisation of CTCs by Combination of Microfluidic Isolation (IsoFlux) and Imaging Flow Cytometry (ImageStream). Cancers (Basel), 2021. 13(24).
70. Ghazani, A.A., et al., Sensitive and direct detection of circulating tumor cells by multimarker micro-nuclear magnetic resonance. Neoplasia, 2012. 14(5): p. 388-95.
71. Rossi, D., et al., New Trends in Precision Medicine: A Pilot Study of Pure Light Scattering Analysis as a Useful Tool for Non-Small Cell Lung Cancer (NSCLC) Diagnosis. J Pers Med, 2021. 11(10).
72. Wang, J., et al., SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Anal Chim Acta, 2021. 1141: p. 206-213.
73. Pallaoro, A., et al., Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano, 2015. 9(4): p. 4328-36.
74. Shanmugasundaram, K.B., et al., Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy. Materials Advances, 2022. 3(3): p. 1459-1471.
75. Langer, J., et al., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020. 14(1): p. 28-117.
76. Zong, C., et al., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev, 2018. 118(10): p. 4946-4980.
77. Gao, R., et al., Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip, 2016. 16(6): p. 1022-9.
78. Cho, H.Y., et al., Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosens Bioelectron, 2018. 102: p. 372-382.
79. Zhang, Y., et al., Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip. Small, 2018. 14(20): p. e1704433.
80. Restaino, S.M. and I.M. White, Real-time multiplexed PCR using surface enhanced Raman spectroscopy in a thermoplastic chip. Lab Chip, 2018. 18(5): p. 832-839.
81. Kaminska, A., et al., Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron, 2015. 66: p. 461-7.
82. Fei, J., et al., Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis. ACS Sens, 2017. 2(6): p. 773-780.
83. Andreou, C., et al., Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano, 2013. 7(8): p. 7157-64.
84. Salemmilani, R., M. Moskovits, and C.D. Meinhart, Microfluidic analysis of fentanyl-laced heroin samples by surface-enhanced Raman spectroscopy in a hydrophobic medium. Analyst, 2019. 144(9): p. 3080-3087.
85. Rodríguez-Lorenzo, L., et al., Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics. ACS Applied Nano Materials, 2019. 2(10): p. 6081-6086.
86. Pu, H.B., W. Xiao, and D.W. Sun, SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends in Food Science & Technology, 2017. 70: p. 114-126.
87. Wang, G., et al., Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem, 2009. 394(7): p. 1827-32.
88. Panneerselvam, R., et al., Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? Lab Chip, 2022. 22(4): p. 665-682.
89. Lu, H., et al., Mixing Assisted "Hot Spots" Occupying SERS Strategy for Highly Sensitive In Situ Study. Anal Chem, 2018. 90(7): p. 4535-4543.
90. Kaminska, A., et al., Detection of Circulating Tumor Cells Using Membrane-Based SERS Platform: A New Diagnostic Approach for ′Liquid Biopsy′. Nanomaterials (Basel), 2019. 9(3).
91. Park, J.E., et al., Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. Sensors (Basel), 2020. 20(18).
92. Tsao, S.C., et al., Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun, 2018. 9(1): p. 1482.
93. Guerrini, L. and R.A. Alvarez-Puebla, Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel), 2019. 11(6).
94. Yarbakht, M., et al., Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta, 2018. 186: p. 44-52.
95. He, M., et al., Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. Sci China Life Sci, 2022. 65(3): p. 561-571.
96. Chu, Y., et al., Attomolar-Level Ultrasensitive and Multiplex microRNA Detection Enabled by a Nanomaterial Locally Assembled Microfluidic Biochip for Cancer Diagnosis. Anal Chem, 2021. 93(12): p. 5129-5136.
97. Wee, E.J., et al., Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics, 2016. 6(10): p. 1506-13.
98. Reza, K.K., et al., In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 2021. 15(7): p. 11231-11243.
99. Willner, M.R., et al., Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis. Anal Chem, 2018. 90(20): p. 12004-12010.
100. Lin, J., J. Zheng, and A. Wu, An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy. J Mater Chem B, 2020. 8(16): p. 3316-3326.
101. Jahn, I.J., et al., Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst, 2017. 142(7): p. 1022-1047.
102. Guo, J.C., et al., Preparation and application of microfluidic SERS substrate: Challenges and future perspectives. Journal of Materials Science & Technology, 2020. 37: p. 96-103.
103. Kim, D.J., et al., Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016. 28(5): p. 1559-1565.
104. Liu, B., et al., Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food and Bioprocess Technology, 2012. 6(3): p. 710-718.
105. Wang, D., et al., Facile Preparation of Ag-NP-Deposited HRGB-SERS Substrate for Detection of Polycyclic Aromatic Hydrocarbons in Water. Chemosensors, 2022. 10(10).
106. Guerrini, L., et al., Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnology, 2017. 8(1).
107. Ge, K., Y. Hu, and G. Li, Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors (Basel), 2022. 12(11).
108. Zhou, Q. and T. Kim, Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors and Actuators B-Chemical, 2016. 227: p. 504-514.
109. Huang, J.A., et al., SERS-Enabled Lab-on-a-Chip Systems. Advanced Optical Materials, 2015. 3(5): p. 618-633.
110. Martins, N.C.T., et al., Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Applied Nano Materials, 2021. 4(5): p. 4484-4495.
111. Li, J., et al., Nitrogen-Doped Titanium Monoxide Flexible Membrane for a Low-Cost, Biocompatible, and Durable Raman Scattering Substrate. Anal Chem, 2021. 93(37): p. 12776-12785.
112. Lim, S.H., et al., Individually Silica‐Embedded Gold Nanorod Superlattice for High Thermal and Solvent Stability and Recyclable SERS Application. Advanced Materials Interfaces, 2019. 6(21).
113. Castro-Grijalba, A., et al., SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sens, 2020. 5(3): p. 693-702.
114. Das, D., S. Senapati, and K.K. Nanda, “Rinse, Repeat”: An Efficient and Reusable SERS and Catalytic Platform Fabricated by Controlled Deposition of Silver Nanoparticles on Cellulose Paper. ACS Sustainable Chemistry & Engineering, 2019. 7(16): p. 14089-14101.
115. Gao, Y., et al., Superhydrophobic 3D Forest‐Like Ag Microball/Nanodendrite Hierarchical Structure as SERS Sensor for Rapid Droplets Detection. Advanced Materials Interfaces, 2019. 6(8).
116. Tang, J., et al., Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement. Nanomaterials (Basel), 2019. 9(2).
117. Krishnan, J.N., et al., Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates. Biochip Journal, 2013. 7(4): p. 375-385.
118. Tsao, C.W., et al., Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst, 2021. 146(24): p. 7645-7652.
119. Xu, D., et al., Droplet-Confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements. ACS Appl Mater Interfaces, 2017. 9(25): p. 21548-21553.
120. Sahin, O., M. Ashokkumar, and P.M. Ajayan, Micro- and nanopatterning of biomaterial surfaces, in Fundamental Biomaterials: Metals. 2018. p. 67-78.
121. Fogh, J. and G. Trempe, New Human Tumor Cell Lines, in Human Tumor Cells in Vitro. 1975. p. 115-159.
122. Martinez-Maqueda, D., B. Miralles, and I. Recio, HT29 Cell Line, in The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, et al., Editors. 2015: Cham (CH). p. 113-24.
123. Bento, D.A., A study of the blood flow behaviour in microchannel networks. 2021.
124. Haddadi, H., et al., Suspension flow past a cylinder: particle interactions with recirculating wakes. Journal of Fluid Mechanics, 2014. 760.
125. Zdravkovich, M.M., Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular-Cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1990. 33(1-2): p. 53-62.
126. Fore, S., et al., Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus. J Opt, 2011. 13(4): p. 44021.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2023-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明