博碩士論文 110324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.129.13.201
姓名 陳禹心(Yu-Sin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
(Fabrication of Si/SiOx/C Composite Negative Electrode for Lithium-Ion Battery by Utilizing Silicon-Based Materials from Recycled Solar Panels)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 隨著科技進步和人口增長,環境和能源問題越來越受到關注。太陽能作為可再生能源之一,由於其普遍性、永久性和低污染性,成為許多國家推動綠色能源的主力。然而,太陽能板的使用壽命有限,不當處理可能對環境造成危害。因此回收及重複利用太陽能板已然成為重要的議題。太陽能板一般含有太陽能電池、鋁框架與乙烯/醋酸乙烯酯(EVA)共聚物等組件,其電池多由矽(Si)所構成。由於矽具有無毒、含量豐富、極高的理論電容量(4200 mAh/g)與低電壓平台(0.2-0.3 V),使矽成為鋰離子電池應用中極具潛力之負極材料。然而,矽在充放電過程中會產生劇烈的體積膨脹/收縮變化,使得電容量快速衰退。為解決上述問題,本研究通過經濟有效的球磨和鍛燒處理,將太陽能板粉末再製成負極材料。藉由調整鍛燒溫度以觀察EVA殘留量,優化球磨和鍛燒的順序,製備出Si/SiOx負極材料並結合碳紙集電體應用於鋰電池中,最後定義出鍛燒500 oC後以300 rpm轉速球磨為最佳參數(500-BM(300)),於充放電100圈後擁有1170 mAh/g之電容量(200 mA/g電流密度下)。此外,因考量商用負極材料需求,將此參數應用於銅箔基材中,並透過矽基材料結合石墨進行複合製備Si/SiOx/C複合材料。結果顯示以Si/C複合比例1:0.6,並結合交聯黏著劑於充放電100圈後可擁有電容量488 mAh/g。為進一步使性能提升,於混漿時添加不同比例之乙醇作為溶劑,協助矽顆粒於漿料中的分散性,使顆粒不易團聚。結果顯示經由水:乙醇比例4:2擁有最佳之電化學性能表現,於100圈循環後擁有748 mAh/g之電容量。以上結果表明本研究可透過低成本且有效的球磨與鍛燒製程,將回收太陽能板之矽基材料結合石墨再製成Si/SiOx/C複合材料,透過交聯黏著劑與乙醇輔助方式協助性能的提升,於銅箔集電體提供高效能的充放電表現。
摘要(英) With technology and population growth, environmental and energy concerns are increasing. Among various renewable energy sources, solar energy has emerged as a leading green energy solution due to its ubiquity, sustainability, and low environmental impact. However, solar panels have a limited lifespan, and improper disposal can pose environmental hazards. Therefore, the recycling and reuse of solar panels have become crucial. Solar panels typically consist of solar cells, aluminum frames, and ethylene-vinyl acetate (EVA) components, with the solar cells predominantly composed of silicon (Si). Silicon, with its non-toxic nature, abundance, high theoretical capacity (4200 mAh/g), and low voltage platform (0.2-0.3 V), shows promise as a negative electrode material for lithium-ion batteries. However, silicon undergoes significant volume expansion/contraction during charging and discharging, leading to rapid capacity degradation. To address this issue, this study employed an economical and efficient ball milling and calcination process to convert recycled solar panel powder into negative electrode material. By adjusting the calcinating temperature to observe the residual EVA content and optimizing the sequence of ball milling and calcination, Si/SiOx material was prepared and combined with carbon paper current collector for application in lithium batteries. The optimal parameters were defined as calcinating at 500°C followed by ball milling at 300 rpm, resulting in a capacity of 1170 mAh/g after 100 cycles. Considering the demand for commercial negative electrode materials, in this study, silicon was combined with graphite to prepare Si/SiOx/C composite material. The results showed that a Si/C composite ratio of 1:0.6, combined with a crosslinking binder, resulted in a capacity of 488 mAh/g. To further enhance the performance, different ratios of ethanol were added as a solvent during slurry mixing to assist in the dispersion of Si particles and prevent aggregation. The results indicated that a water:ethanol ratio of 4:2 exhibited the best electrochemical performance, with a capacity of 748 mAh/g after 100 cycles. These results demonstrate that this study successfully utilizing recycled solar panels and transformed them into Si/SiOx/C composite material using a low-cost and efficient ball milling and annealing process. The performance was further improved through the use of a crosslinking binder and ethanol-assisted dispersion, providing high-performance charge-discharge behavior on copper foil current collectors.
關鍵字(中) ★ 回收太陽能板
★ 矽/碳複合材料
★ 鋰離子電池負極
★ 交聯黏著劑
關鍵字(英) ★ Recycled solar panels
★ silicon/carbon composites
★ negative electrodes of lithium-ion batteries
★ cross-linked binder
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 能源環境現況 1
1-2 太陽能模組與產業介紹 3
1-3 研究動機 6
第二章 文獻回顧 7
2-1 鋰離子電池之發展與應用 7
2-2 鋰離子電池之運作原理 9
2-3 鋰離子電池之組成材料 11
2-3-1 負極材料(Negative Electrode Materials) 12
2-3-2 正極材料(Positive Electrode Materials) 18
2-3-3 電解質(Electrolyte) 20
2-3-4 隔離膜(Separator) 21
2-3-5 導電劑(Conductive Agent) 21
2-3-6 黏著劑(Binder) 22
2-3-7 集電體(Current Collector) 23
2-4 矽基負極材料(Silicon-based Negative Electrode Materials) 24
2-5 矽/碳複合材料(Si/C Composite Materials) 30
2-6 碳纖維集電體(Carbon Fiber Current Collector) 34
2-7 新型交聯黏著劑(Novel Cross-linking Binder) 36
第三章 實驗方法 39
3-1 實驗架構 39
3-2 矽負極材料與鈕扣型電池製備 41
3-2-1 實驗藥品與實驗儀器 41
3-2-2 Si/SiOx負極活性物質之製備 43
3-2-3 Si/SiOx/C負極活性物質之製備 44
3-2-4 Si/SiOx碳紙集電體極片之製備 45
3-2-5 Si/SiOx/C銅箔集電體極片之製備 46
3-2-6 交聯Si/SiOx/C銅箔集電體極片之製備 46
3-2-7 乙醇輔助Si/SiOx/C銅箔集電體極片之製備 47
3-2-8 CR2032鈕扣型鋰離子電池之組裝 47
3-3 材料分析與電化學性能測試 49
3-3-1 超高解析場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 49
3-3-2 X光繞射儀 (X-ray Diffraction, XRD) 49
3-3-3 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 50
3-3-4 高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscope, HR-TEM) 51
3-3-5 動態光散射儀(Dynamic Light Scattering, DLS) 51
3-3-6 熱重分析儀(Thermogravimetric Analysis, TGA) 51
3-3-7 感應耦合電漿質譜分析儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 52
3-3-8 Zeta電位量測儀(Zeta Potential) 52
3-3-9 傅立葉轉換紅外光譜(Fourier-transform Infrared Spectroscopy, FTIR) 54
3-3-10 交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 54
3-3-11 循環充放電與倍率性能測試(Charge and Discharge Test) 56
第四章 結果與討論 57
4-1 Si/SiOx應用於碳纖維紙集電體之材料與電性分析 57
4-1-1 ICP-MS定量分析 57
4-1-2 TGA分析 57
4-1-3 X光繞射分析 60
4-1-4 FE-SEM分析 62
4-1-5 DLS分析 64
4-1-6 XPS分析 67
4-1-7 循環充放電分析 71
4-1-8 不同電流密度快速充放電分析 74
4-2 Si/SiOx應用於銅箔基材之電性分析 75
4-3 Si/SiOx/C應用於銅箔基材之材料與電性分析 83
4-3-1 X光繞射分析 83
4-3-2 FE-SEM分析 85
4-3-3 HR-TEM分析 88
4-3-4 循環充放電分析 91
4-3-5 不同電流密度快速充放電分析 93
4-3-6 交流阻抗分析 94
4-4 交聯Si/SiOx/C應用於銅箔基材之材料與電性分析 96
4-4-1 FTIR分析 96
4-4-2 FE-SEM分析 98
4-4-3 循環充放電分析 101
4-4-4 不同電流密度快速充放電分析 104
4-4-5 交流阻抗分析 106
4-5 乙醇輔助Si/SiOx/C應用於銅箔基材之分析 108
4-5-1 Zeta電位分析 108
4-5-2 循環充放電分析 110
4-5-3 不同電流密度快速充放電分析 112
第五章 結論與未來展望 113
5-1 結論 113
5-1-1 Si/SiOx應用於碳纖維紙集電體 113
5-1-2 Si/SiOx應用於銅箔集電體 115
5-1-3 Si/SiOx/C應用於銅箔集電體 116
5-2 未來展望 118
參考文獻 119
參考文獻 [1] Jessica Aizarani, “Global primary energy consumption 2019-2021, by fuel”, Statista (2023).
[2] IRENA, “Renewable energy targets in 2022: A guide to design, International Renewable Energy Agency”, Abu Dhabi, (2022).
[3] Jason Svarc, “Solar Panel Construction”, Clean Energy Review, (2020).
[4] P. Majewski, W. Al-shammari, and M. Dudley et al., “Recycling of solar PV panels- product stewardship and regulatory approaches”, Energy Policy, 149, 112062, (2021).
[5] N. Mufti, T. Amrillah, and A. Taufiq et al., “Review of CIGS-based solar cells manufacturing by structural engineering”, Solar Energy, 207, 1146-1157, (2020).
[6] A. Mulazzani, P. Eleftheriadis, and S. Leva, “Recycling c-Si PV Modules: A Review, a Proposed Energy Model and a Manufacturing Comparison”, Energies, 15, 8419, (2022).
[7] V. M. Fthenakis and W. Wang, “Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap”, Progress in Photovoltaics: Research and Applications, 14, 363-371, (2006).
[8] Y. Xu, J. Li, and Q. Tan et al., “Global status of recycling waste solar panels: A review”, Waste Management, 75, 450-458, (2018).
[9] A. M. Bagher, M. M. A. Vahid, and M. Mohsen, “Types of solar cells and application”, American Journal of optics and Photonics, 3, 94-113, (2015).
[10] R. Kiran, P. Leev, and R. Alexandra et al., “An introduction to solar cell technology”. Journal of Applied Engineering Science, 14, 481-491, (2016).
[11] T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production”, NPG Asia Mater, 2, 96–102, (2010).
[12] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, 359–367, (2001).
[13] M. S. Whittingham, “History, Evolution, and Future Status of Energy Storage”, Proceedings of the IEEE, 100, 1518-1534, (2012).
[14] R. Marom, S. F. Amalraj, and N. Leifer et al., “A review of advanced and practical lithium battery materials”, Journal of Materials Chemistry, 21, 9938-9954, (2011).
[15] Z. Cano, D. Banham, and S. Ye et al., “Batteries and fuel cells for emerging electric vehicle markets”, Nature Energy, 3, 279-289, (2018).
[16] G. J. May, A. Davidson, and B. Monahov et al., “Lead batteries for utility energy storage: A review”, Journal of Energy Storage, 15, 145-157, (2018).
[17] L. O. Valoen and M. I. Shoesmith, “The effect of PHEV and HEV duty cycles on battery and battery pack performance”, Energy Technology Data Exchange, 1-9, (2007).
[18] J. Jyoti, B. P. Singh, and S. K. Tripathi, “Recent advancements in development of different cathode materials for rechargeable lithium ion batteries”, Journal of Energy Storage, 43, 103112, (2021).
[19] J. Lu, Z. Chen, and F. Pan et al, “High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries”, Electrochemical Energy Reviews, 1, 35–53, (2018).
[20] P. Sehrawat, A. Abid, and S. S. Islam et al., “Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries”, Journal of Carbon Research, 6, 81, (2020).
[21] M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, “Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries”, Chemical Reviews, 113, 5364-5457, (2013).
[22] L. Liu, F. Xie, and J. Lyu, et al., “Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries”, Journal of Power Sources, 321, 11-35, (2016).
[23] A. Kamali and D. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A Review”, Reviews on Advanced Materials Science, 27, 14-24, (2011).
[24] X. Liu, X. Y. Wu, and B. Chang, et al., “Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms”, Energy Storage Materials, 30, 146-169, (2020).
[25] J. He, Y. Wei, and T. Zhai et al., “Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries”, Materials Chemistry Frontiers, 2, 437-455, (2018).
[26] D. Liu, Z. Liu, and X. Li, et al., “Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries”, Small, 13, 1702000, (2017).
[27] Y. Lu, L. Yu, and X. W. (David) Lou, “Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries”, Chem, 4, 972-996, (2018).
[28] X. Sun, P. V. Radovanovic, and B. Cui, “Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries”, New Journal of Chemistry, 39, 38-63, (2015).
[29] H. Wu and Y. Cui, “Designing nanostructured Si anodes for high energy lithium ion batteries”, Nano Today, 7, 414-429, (2012).
[30] R. Deshmukh, G. Zeng, and E. Tervoort et al., “Ultrasmall Cu3N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation Mechanism, and Application for Lithium Storage”, Chemistry of Materials, 27, 8282–8288, (2015).
[31] L. Luo, J. Wu, and J. Xu et al., “Atomic Resolution Study of Reversible Conversion Reaction in Metal Oxide Electrodes for Lithium-Ion Battery”, ACS Nano, 8, 11560–11566, (2014).
[32] J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries”, Journal of Power Sources, 195, 939-954, (2010).
[33] Z. Chen, L. Zhang, and X. Wu et al., “Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2||SiOx/Graphite lithium-ion batteries”, Journal of Power Sources, 439, 227056, (2019).
[34] J. Kalhoff, G. G. Eshetu, and D. Bresser et al., “Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives”, Chem Sus Chem, 8, 2154-2175, (2015).
[35] C. M. Costa, Y. Lee, and J. Kim et al., “Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes”, Energy Storage Materials, 22, 346-375, (2019).
[36] S. Kuroda, N. Tobori, and M. Sakuraba et al., “Charge–discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries”, Journal of Power Sources, 119–121, 924-928, (2003).
[37] H. Song, Y. Oh, and N. Çakmakç et al., “Effects of the aspect ratio of the conductive agent on the kinetic properties of lithium ion batteries”, RSC Advances, Volume 9, 40883, (2019).
[38] L. Wei and Z. Hou, “High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries”, Journal of Materials Chemistry A, 5, 22156-22162, (2017).
[39] W. Zhu, J. Zhou, and S. Xiang et al., “Progress of Binder Structures in Silicon-Based Anodes for Advanced Lithium-Ion Batteries: A Mini Review”, Frontiers of Chemistry, 9, 712225, (2021).
[40] Y. Wang, D. Dang, and D. Li et al., “Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling”, Journal of Power Sources, 438, 226938, (2019).
[41] C. Lamiel, I. Hussain, and X. Ma et al., “Properties, functions, and challenges: current collectors”, Materials Today Chemistry, 26, 101152, (2022).
[42] M.T. McDowell, S. W. Lee, and W. D. Nix et al., “25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries”, Advanced Materials, 25, 4966-4985, (2013).
[43] X. Zuo, J. Zhu, and P. Müller-Buschbaum et al., “Silicon based lithium-ion battery anodes: A chronicle perspective review”, Nano Energy, 31, Pages 113-143, (2017).
[44] N. Kalidas, X. Shen, and M. Yuan et al., “Controlled surface oxidation of mesoporous silicon microparticles to achieve a stable Si/SiOx anode for lithium-ion batteries”, Microporous and Mesoporous Materials, 344, 112243, (2022).
[45] M. S. Al Ja’farawy, Hikmah, D. N. Hikmah, and U. Riyadi et al., “A Review: The Development of SiO2/C Anode Materials for Lithium-Ion Batteries”, Journal of Electronic Materials, 50, 6667–6687, (2021).
[46] M. Jiao, Y. Wang, and C. Ye et al., “High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries”, Journal of Alloys and Compounds, 842, 155774, (2020).
[47] K. Feng, M. Li, W. Liu, and A. G. Kashkooli et al., “Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications”, Small, 14, 1702737, (2018).
[48] X. Chen, H. Li, and Z. Yan et al., “Structure design and mechanism analysis of silicon anode for lithium-ion batteries”, Science China Material, 62, 1515–1536, (2019).
[49] S. Chae, M. Ko, and K. Kim et al., “Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries”, Joule, 1, 47-60, (2017).
[50] C. K. Chan, H. Peng, and G. Liu et al., “High-performance lithium battery anodes using silicon nanowires”, Nature Nanotechnology, 3, 31-35, (2008).
[51] S. Casino, B. Heidrich, and A. Makvandi et al., “Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells”, Journal of Energy Storage, 44, 103479, (2021).
[52] B. Koo, H. Kim, and Y. Cho et al., “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries”, Angewandte Chemie International Edition, 51, 8762-8767, (2012).
[53] T. Kwon, Y. K. Jeong, and E. Deniz et al., “Dynamic Cross-Linking of Polymeric Binders Based on Host–Guest Interactions for Silicon Anodes in Lithium Ion Batteries”, ACS Nano, 9, 11317-11324, (2015).
[54] C. Wang, H. Wu, and Z. Chen et al., “Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries”, Nature Chemistry, 5, 1042–1048, (2013).
[55] Y. Yue and H. Liang, “3D Current Collectors for Lithium-Ion Batteries: A Topical Review”, Small Methods, 2, 1800056, (2018).
[56] H. Jeon, I. Cho, and H. Jo et al., “Highly rough copper current collector: improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries”, RSC Advances, 7, 35681-35686, (2017).
[57] X. Shen, Z. Tian, and R. Fan et al., “Research progress on silicon/carbon composite anode materials for lithium-ion battery”, Journal of Energy Chemistry, 27, 1067-1090, (2018).
[58] Y. Mei, Y. He, and H. Zhu et al., “Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review”, Coatings, 13, 436, (2023).
[59] S. You, H. Tan, and L. Wei et al., “Design Strategies of Si/C Composite Anode for Lithium-Ion Batteries”, Chemistry A European Journal, 27, 12237, (2021).
[60] Q. H. Nguyen, I. T. Kim, and J. Hur, “Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries”, Electrochimica Acta, 297, 355-364, (2019).
[61] L. Qian, J. Lan, and M. Xue et al., “Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability”, RSC Advances, 7, 36697-36704, (2017).
[62] J. Guo, A. Sun, and C. Wang, “A porous silicon–carbon anode with high overall capacity on carbon fiber current collector”, Electrochemistry Communications, 12, 981–984, (2010).
[63] C. C. Nguyen, T. Yoon, and D. M. Seo et al., “Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation”, ACS Applied Materials & Interfaces, 8, 12211−12220, (2016).
[64] B. Zhang, Z. Li, and H. Xie et al., “Cross-linking chemistry enables robust conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries”, Journal of Power Sources, 556, 232495, (2023).
[65] C. N. Lunardi, A. J. Gomes, Rocha, and F. S. Rocha et al., “Experimental methods in chemical engineering: Zeta potential”, The Canadian Journal of Chemical Engineering, 99, 627– 639, (2021).
[66] W. Choi, H. Shin, and J. Kim et al., “Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries”, Journal of Electrochemical Science and Technology, 11, 1-13, (2020).
[67] W. S. Chen, Y. J. Chen, and K. C. Yueh et al., “Recovery of valuable metal from Photovoltaic solar cells through extraction”, IOP Conference Series: Materials Science and Engineering, 720, 012007, (2020).
[68] C. E. Son and S.S. Choi, “Characterization of Poly (ethylene-co-vinyl acetate) (EVA) Using Thermal Analytical Techniques,” Elastomers and Composites, 54, 61–69, (2019).
[69] R. Schmidt, H. M. Scholze, and A. Stolle, “Temperature progression in a mixer ball mill”, International Journal of Industrial Chemistry, 7, 181–186, (2016).
[70] Y. H. Liu, Y. L. Chen, and Y. S. Chen et al., “Utilization of Si/SiOx/Al2O3 materials from recycled solar cells for a high-performance lithium-ion battery anode”, Green Chemistry, 24, 5151-5161, (2022).
[71] D. Wang, M. Gao, and H. Pan et al., “High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization”, Journal of Power Sources, 256, 190-199, (2014).
[72] Q. Si, K. Hanai, and T. Ichikawa et al., “Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries”, Journal of Power Sources, 196, 9774-9779, (2011).
[73] B. Ulgut and S. Suzer, “XPS Studies of SiO2/Si System under External Bias”, The Journal of Physical Chemistry B, 107, 2939-2943, (2003).
[74] Y. Wu, M. Li, and Wandi Wahyudi et al., “Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al2O3 Sol–Gel Coating”, ACS Omega, 4, 13972-13980, (2019).
[75] R. Bhandavat and G. Singh, “Stable and Efficient Li-Ion Battery Anodes Prepared from Polymer-Derived Silicon Oxycarbide–Carbon Nanotube Shell/Core Composites”, The Journal of Physical Chemistry C, 117, 11899-11905, (2013).
[76] B. Wang, X. Li, and B. Luo et al., “Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes”, ACS Applied Materials & Interfaces, 5, 6467-6472, (2013).
[77] P. Parikh, M. Sina, and A. Banerjee et al., “Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes”, Chemistry of Materials, 31, 2535–2544, (2019).
[78] C. C. Wu and C. C. Li, “Distribution Uniformity of Water-Based Binders in Si Anodes and the Distribution Effects on Cell Performance”, ACS Sustainable Chemistry & Engineering, 8, 6868-6876, (2020).

[79] J. Asenbauer, T. Eisenmann, and M. Kuenzel et al., “The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites”, Sustainable Energy Fuels, 4, 5387-5416, (2020).
[80] M. Cabello and E. Gucciardi, “Towards a High-Power Si@graphite Anode for Lithium Ion Batteries through a Wet Ball Milling Process”, Molecules, 25, 2494, (2020).
[81] R. L. Rasmussen, J. G. Morse, and K. W. Morse, “Main Group Elements”, Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, 1-30, (2003).
[82] E. Moyassari, L. Streck, and N. Paul et al., “Impact of Silicon Content within Silicon-Graphite Anodes on Performance and Li Concentration Profiles of Li-Ion Cells using Neutron Depth Profiling”, Journal of The Electrochemical Society, 168, 020519, (2021).
[83] S. X. Drakopoulos, T. Cowell, and E. Kendrick, “Graphite-SiOx Electrodes with a Biopolymeric Binder for Li-Ion Batteries: Predicting the Cycle Life Performance from Physical Properties”, ACS Applied Energy Materials, 6, 6543–6553, (2023).
[84] S. Fan, H. Wang, and J. Qian et al., “Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries”, ACS Applied Materials & Interfaces, 12, 16411–16416, (2020).
[85] D. Shin, H. Park, and U. Paik, “Cross-linked poly (acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries”, Electrochemistry Communications, 77, (2017).
[86] L. Wei, C. Chen, and Z. Hou et al., “Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries”, Scientific Reports, 6, 19583, (2016).
[87] G. A. Kelesidis, F. M. Furrer, and K. Wegner et al., “Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution”, Langmuir, 34, 8532-8541, (2018).
[88] J. Ren, S. Song, and A. L. Valdivieso et al., “Dispersion of Silica Fines in Water–Ethanol Suspensions”, Journal of Colloid and Interface Science, 238, 279-284, (2001).
[89] S. Urbonaite, I. Baglien, and D. Ensling et al., “Effect of ethanol-assisted electrode fabrication on the performance of silicon anodes”, Journal of Power Sources, 195, 5370–5373, (2010).
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明