博碩士論文 110324066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.144.10.130
姓名 劉嘉翰(Jia-Han Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
(Ethanol-Assisted Hydrothermal Synthesis of High Voltage Fe-Doped LiNi0.5Mn1.5O4 Positive Electrode Using Metal-Organic Framework for Lithium-Ion Battery)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 無鈷尖晶石正極材料LiNi0.5Mn1.5O4(LNMO)由於低成本、高工作電壓、優異的能量密度(690 Wh/kg),以及良好的熱穩定性而受到廣泛的關注。然而,其高工作電壓(4.7 V vs Li/Li+)會加速商用電解液劣化,容易導致長時間循環壽命衰減,使得實際可行性備受挑戰。為了解決這些問題,我們提出一種創新的方式結合乙醇輔助水熱和金屬有機框架(基於PTA的MOFs)作為前驅物,合成出LNMO複合正極。如此一來,金屬離子便可以成功與有機配體排列整齊,同時乙醇輔助水熱法進一步改善LNMO顆粒的分散性與降低顆粒尺寸。而為了實現最佳電化學性能,因此我們使用不同的水熱溫度(T=100、120、140、160 °C)來定義出最佳參數,並加以合成。接著,透過在 MOF 的 Ni-Mn 前驅體中摻雜 Fe,以三金屬前驅體煅燒形成 Fe 摻雜 LNMO (LiNi0.5-xMn1.5-xFe2xO4 (x=0, 0.03, 0.05 , 0.1, 0.15))來增加結構穩定性。結果證實,這種新穎的合成方法是製備高性能LNMO正極之可行策略,不同水熱溫度讓LNMO前軀物擁有不同的顏色和粒徑大小。此外,合成之LNMO表面會自然生成出無定質的Li2CO3層(厚度約1 nm),以保護材料免受電解液之過度反應,並有效輔助Li+擴散進行。在所有樣品中,LNMO-120°C具有最小的顆粒大小和均勻的粒徑分佈,在0.2 C下,具有最佳的142.5 mAh/g之實際電容量,並在1 C速率下第200次循環後之電容保持率為80.1%。與原始LNMO正極不同,摻雜Fe之尖晶石材料減少了常見的LixNi1-xO雜質相,並具有令人滿意的循環穩定性, LiNi0.45Fe0.1Mn1.45O4樣品顯示出最出色的循環穩定性(在1 C下200圈循環後之電容保持率為96.7%),成功大幅改善了商用LNMO所存在的結構穩定性問題。另外,也具備極佳的倍率性能,即使在5 C下,其容量仍達到118.9 mAh/g,並通過GC-MS證實Fe摻雜能有效去抑制並減緩電解液中有機酯EC與DEC劣化成其他副產物。
摘要(英) The cobalt-free spinel positive electrode LiNi0.5Mn1.5O4 (LNMO) is receiving extensive attention for lithium-ion batteries due to its low cost, high operating voltage (4.7 V vs. Li/Li+), superior energy density (690 Wh/kg), and good thermal stability. However, its high operating voltage hampers its stability with commercial electrolytes, leading to capacity decay during long-term charge-discharge cycling. This makes its practical viability challenging.
To solve these problems, we combined ethanol-assisted hydrothermal and metal−organic frameworks (PTA-based MOFs) as precursors to synthesize high-voltage LNMO composite positive electrode. In this way, the metal ions can be successfully aligned by organic ligands, meanwhile the ethanol-assisted hydrothermal process improves the dispersity of LNMO particles with reduced particle size. Since selecting the appropriate hydrothermal temperature is crucial to achieve optimal electrochemical performance, we used different hydrothermal temperatures (T=100, 120, 140, 160°C) for synthesis. In order to further enhance structural stability, Fe was doped in the Ni-Mn precursors of MOF, and the trimetallic precursor is calcinated to form Fe-doped LNMO (LiNi0.5-xMn1.5-xFe2xO4 (x=0, 0.03, 0.05, 0.1, 0.15)).
The results confirm that the novel synthesis method is a feasible strategy to fabricate high-performance LNMO positive electrodes. Various hydrothermal temperatures give rise to different colors and particle size of the LNMO precursors. In addition, it is confirmed by XPS that an amorphous Li2CO3 layer formed on the surface of the as-synthesized LNMO, which can protect the material from overreaction and effectively assist Li+ diffusion. Among the samples, the LNMO-120°C is the smallest with uniform size distribution and has the best discharge capacity (142.5 mAh/g at 0.2 C) and cycling stability with a capacity retention of 80.1 % after 200 cycles at 1 C. Different from the parent LNMO material, the Fe-doped spinel one has reduced rock-salt-type impurity phase and satisfactory cycling stability and rate performance. Among all the samples, the LiNi0.45Fe0.1Mn1.45O4 sample shows the best cycling stability (capacity retention of 96.7 % after 200 cycles at 1 C) and rate capability with a capacity of 118.9 mAh/g even at 5 C.
關鍵字(中) ★ 高電壓正極
★ 金屬有機框架
★ Fe摻雜
★ Li2CO3表面塗層
★ 鋰離子電池
關鍵字(英) ★ High-voltage positive electrode
★ Metal−Organic Frameworks
★ Fe-doped
★ Li2CO3 coating
★ Lithium-ion battery
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章、序論 1
1-1能源議題現況及儲能發展 1
1-2鋰離子產業之發展及未來趨勢 4
1-3鋰離子電池的組成與工作原理 6
1-4鋰離子電池的組成材料 8
1-4-1正極材料 8
1-4-2負極材料 12
1-4-3電解質 14
1-4-4隔離膜 15
1-4-5集電體 16
1-4-6黏著劑 17
1-5研究動機 19
第二章、文獻回顧 21
2-1 LiNi0.5Mn1.5O4 (LNMO)正極材料 21
2-2 開發新型LNMO正極材料之合成方式(Novel synthesis method) 24
2-2-1 乙醇輔助水熱法(Ethanol-assisted hydrothermal method) 28
2-2-2 高分子輔助法之有機金屬框架(MOF) 30
2-3 過渡金屬(Transition Metal, TM)摻雜 34
第三章、實驗方法 37
3-1 實驗架構 37
3-2實驗藥品與儀器 39
3-2-1 實驗藥品 39
3-2-2 實驗材料 40
3-2-3 實驗儀器 41
3-3實驗方法與步驟 42
3-3-1活性物質之製備 42
3-3-2 LNMO及Fe-doped LNMO碳纖維紙集電體之極片製備 44
3-3-3 CR2032 鈕扣型電池製備 44
3-4電極材料分析與電化學分析 46
3-4-1熱重分析儀 (Thermogravimetric Analyzer, TGA) 47
3-4-2高解析場發掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 47
3-4-3 X光繞射分析儀(X-ray Diffraction, XRD) 48
3-4-4傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR) 48
3-4-5 X 射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 49
3-4-6感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 49
3-4-7 動態光散射儀(Dynamic Light Scattering, DLS) 50
3-4-8 充放電性能測試分析 (Charge/Discharge Test) 50
3-4-9 循環伏安分析 (Cyclic Voltammetry, CV) 51
3-4-10 EIS阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 52
3-4-11 高解析氣相層析質譜分析 (High Resolution Gas Chromatograph Mass Spectrometer , HRGC-MS) 52
3-4-12 高解析穿透式電子顯微鏡(Transmission Electron Microscopy, HR-TEM) 53
第四章、結果與討論 54
4-1 不同水熱溫度以合成LNMO正極材料之前驅物 54
4-1-1 LNMO前驅物之顏色與表面型態分析 54
4-1-2 LNMO前驅物之粒徑分布分析 56
4-1-3 LNMO前驅物之XRD圖譜分析 59
4-1-4 LNMO前驅物之FTIR光譜分析 61
4-1-5 LNMO前驅物之ICP-MS定量分析 63
4-2 比較MOF保留/去除對於LNMO正極材料之影響 64
4-2-1 XRD圖譜分析 64
4-2-2電化學分析-充放電與循環穩定性測試 66
4-2-3有機配體之熱重分析 68
4-3不同水熱溫度合成LNMO正極材料 69
4-3-1 LNMO之表面型態分析 69
4-3-2 LNMO之粒徑分布分析 71
4-3-3 LNMO之XRD圖譜分析 73
4-3-4 LNMO之電化學分析-充放電與循環穩定性測試 75
4-3-5 LNMO之電化學分析-快速充放電測試 78
4-4 鐵摻雜對於LNMO正極材料前驅物之影響 80
4-4-1 Fe-doped LNMO前驅物表面型態分析 80
4-4-2 Fe-doped LNMO前驅物XRD圖譜分析 82
4-4-3 Fe-doped LNMO前驅物FTIR光譜分析 83
4-4-4 Fe-doped LNMO前驅物ICP-MS定量分析 84
4-5鐵摻雜對於LNMO正極材料之影響 86
4-5-1 Fe-doped LNMO之表面型態分析 86
4-5-2 Fe-doped LNMO之XRD圖譜分析 91
4-5-3 Fe-doped LNMO之FTIR分析 94
4-5-4 Fe-doped LNMO之XPS分析 95
4-5-4 Fe-doped LNMO之HR-TEM分析 100
4-5-5 Fe-doped LNMO之電化學分析-充放電與循環穩定性測試 103
4-5-6 Fe-doped LNMO之電化學分析-快速充放電測試 106
4-5-7 Fe-doped LNMO之電化學分析-循環伏安法分析 108
4-5-8 Fe-doped LNMO之電化學分析-電化學阻抗分析 110
4-5-9 與商用電極之電性比較-Li2CO3表面塗層與Fe摻雜LNMO 115
4-6電解液劣化分析 117
第五章、結論與未來展望 123
5-1 結論 123
5-1-1 不同水熱溫度合成LNMO正極材料 123
5-1-2 鐵摻雜對於LNMO正極材料之影響 125
5-2 未來展望 127
參考文獻 128
參考文獻 [1] Our World in Data, Global CO2 emissions from fossil fuels, 2021; Available from:
https://ourworldindata.org/co2-emissions
[2] TrendForce’s Department of Green Energy Research. 2022; Available from:
https://www.trendforce.com/presscenter/news/20220728-11319.html
[3] X. Shan, J. Wu, X. Zhang, and L. Wang et al., Wood for Application in Electrochemical Energy Storage Devices, Cell Reports Physical Science, 2, 2021, 100654.
[4] A. A. Kebede, T. Kalogiannisa, and J. V. Mierloa et al., A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration, Renewable and Sustainable Energy Reviews, 159, 2022, 112213.
[5] K. Mizushima, P.C. Jones, and J.B. Goodenough et al., LixCoO2 (0 < x < -1): A new cathode material for batteries of high energy density, Materials Research, 15, 1980, 783-789
[6] G. Ceder, Y.M. Chiang, and D.R. Sadoway et al., Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature, 392, 1998, 694-696.
[7] S. Li, K. Wang, and S. Li et al., Fast Charging Anode Materials for Lithium‐Ion Batteries: Current Status and Perspectives. Advanced Functional Materials, 32, 2022, 2200796.
[8] B. Xu, D. Qian, and Z. Wang et al., Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73, 2012, 51-65.
[9] M.M. Thackeray, W.I.F. David, and J.B. Goodenough et al., Lithium insertion into manganese spinels, Materials Research Bulletin, 18, 1983, 461-472.
[10] J.B. Goodenough, M.M. Thackeray, and W.I.F. David et al., Lithium insertion/extraction reactions with manganese oxides, Revue de chimie minérale, 21, 1984, 435-455.
[11] W.I.F. David, M.M. Thackeray, and J.B. Goodenough et al., Lithium insertion into βMnO2 and the rutile-spinel transformation, Materials Research Bulletin, 19, 1984, 99–106.
[12] D. Aurbach, M.D. Levi, and K. Gamulski et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques, Journal of Power Sources, 81-82, 1999, 472-479.
[13] J.H. Kim, S.T. Myung, and C.S. Yoon et al., Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3-m and P4332, Chemistry of Materials, 16, 2004, 906-914.
[14] J. Molenda, J. Marzec, and K. Świerczek et al., The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel, Solid State Ionics, 171, 2004, 215-227.
[15] K. Takahashi, M. Saitoh, and M. Sano et al., Electrochemical and Structural Properties of a 4.7 V-Class LiNi0.5Mn1.5O4 Positive Electrode Material Prepared with a Self-Reaction Method, Journal of the Electrochemical Society, 151, 2004, 173-177.
[16] S.T. Myung, S. Komaba, and N. Kumagai et al., Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method, Electrochimica Acta, 47, 2002, 2543-2549.
[17] H. Cheng, J. G. Shapter, and Y. Li et al., Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy Chemistry, 57, 2021, 451-468.
[18] Bo Liang, Yanping Liu, and Yunhua Xu et al., Silicon-based materials as high capacity anodes for next generation lithium ion batteries, Journal of Power Sources, 267,2014, 469-490.
[19] S.D. Beattie, M.J. Loveridge, and M.J. Lain et al., Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies, Journal of Power Sources, 302, 2016, 426-430.
[20] X. Su, Q. Wu, and J. Li et al., Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review, Advanced Energy Materials, 4, 2014, 1300882.
[21] F. Wu, J. Maier, and Y. Yu et al., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 49, 2020, 1569-1614.
[22] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 244, 2013, 19-28.
[23] P. Arora, Z. (John) Zhang, Battery separators, Chemical reviews,104, 2004, 4419-4462.
[24] Y. Yao, Investigation on a glass fiber-based composite separator for lithium-ion batteries., Journal of Power Sources, 205, 2012, 473-478.
[25] Y. Huang, L. Wang, and J. Xie et al., A review of biodegradable materials for environmentally-friendly lithium-ion batteries. Energy Storage Materials, 30, 2020, 101-121.
[26] P. Zhu, D. Gastol, and J. Marshall et al., A review of current collectors for lithium-ion batteries, Journal of Power Sources, 485, 2021, 229321.
[27] Y. Shi, X. Zhou, and G. Yu et al., Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Accounts of Chemical Research, 50, 2017, 2642-2652.
[28] P. Parikh, M. Sina, and A. Banerjee et al., Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes, Chemistry of Materials, 31,2019, 2535-2544
[29] J. Xu, S. Dou, and H. Liu et al., Cathode materials for next generation lithium ion batteries, Nano Energy, 2, 2013, 439-442
[30] T. Ohzuku and R.J. Brodd, An Overview of Positive Electrode Materials for Advanced Lithium-Ion Batteries , Journal of Power Sources, 174, 2007, 449-456.
[31] T. Kawamura, A. Kimura, and M. Egashira et al., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells, Journal of Power Sources, 2002, 104, 260-264.
[32] C. Schultz, S. Vedder, and B. Streipert et al., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 7, 2017, 27853-27862.
[33] L. Hanf, J. Henschel, and M. Diehl et al., Mn2+ or Mn3+ ? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis, Electrophoresis, 2020, 41, 697-704.
[34] G. Liang, V.K. Peterson, and K.W. See et al., Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy density lithium-ion batteries: current achievements and future prospects, Journal of Materials Chemistry A, 2020, 8, 15373-15398.
[35] J. Wang, M. Yang, and C. Zhao et al., Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy, Physical Chemistry Chemical Physics, 2019, 21, 24017-24025.
[36] K.R. Chemelewski, D.W. Shin, and W. Li et al., Octahedral and Truncated High-Voltage Spinel Cathodes: the Role of Morphology and Surface Planes in Electrochemical Properties, Journal of Materials Chemistry A , 2013, 1, 3347-3354.
[37] Z. Chen, R. Zhao, and P. Du et al., Polyhedral LiNi0.5Mn1.5O4 with Excellent Electrochemical Properties for Lithium-Ion Batteries, Journal of Materials Chemistry A, 2014, 2, 12835-12848.
[38] R. Amin, I. Belharouak, Part-II: exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode, Journal of Power Sources, 348 2017, 318–325.
[39] Y.Y. Sun, Y.F. Yang, and H. Zhan et al., Synthesis of high power Type LiMn1.5Ni0.5O4 by optimizing its preparation conditions, Journal of Power Sources, 195, 2010, 4322–4326.
[40] X. Fang, N. Ding, and X.Y. Feng et al., Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism, Electrochimica Acta, 54, 2009, 7471–7475.
[41] X. Huang, Q. Zhang, and J. Gan et al., Hydrothermal Synthesis of a Nanosized LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium-Ion Batteries, Journal of The Electrochemical Society, 158 ,2011,139-145.
[42] Y. Liu, M. Zhang, and Y. Xia et al., One-step hydrothermal method synthesis of core–shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries, Journal of Power Sources, 256, 2014, 66-71.
[43] K.M. Shaju and P.G. Bruce, Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries, Dalton Transactions, 40, 2008, 5471–5475.
[44] M. Chen, X. Xiang, and D. Chen et al., Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery, Journal of Power Sources, 279, 2015, 197-204.
[45] Y. Xue, Z. Wang, and F. Yu et al., Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. Journal of Materials Chemistry A, 2, 2014, 4185-4191.
[46] H.I. Chen and H.Y. Chang, Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242, 2004, 61-69.
[47] J.J. Perry IV, J.A. Permana, and M.J. Zaworotko, Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks, Chemical Society Reviews, 38, 2009, 1400-1417.
[48] Y.R. Lee, J. Kim, and W.S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean Journal of Chemical Engineering, 30, 2013, 1667-1680.
[49] X. Xu, R. Cao, and S. Jeong et al., Spindle-like Mesoporous α-Fe2O3 anode Material Prepared from MOF Template for High-Rate Lithium Batteries, Nano Letters, 12, 2012, 4988-4991.
[50] S. Yang, W. Ren, and J. Chen, Facile synthesis of spinel LiNi0.5Mn1.5O4 cathode materials using M2(OH)2(C8H4O4)-class metal-organic frameworks, Ionics, 23, 2017, 2969-2980.
[51] G.Q. Liu, L. Wen, and Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Journal of Solid State Electrochemistry, 14, 2010, 2191–2202.
[52] S.H. Oh, K.Y. Chung, and S.H. Jeon et al., Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M =Cr, Al, Zr) compound for 5V cathode material, Journal of Alloys and Compounds, 469, 2009, 244-250.
[53] G.B. Zhong, Y.Y. Wang, and Y.Q. Yu et al., Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205, 2012, 385-393.
[54] T.A. Arunkumar and A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4, Electrochimica Acta, 50, 2005, 5568-5572.
[55] J. Mao, K. Dai, and M. Xuan et al., Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material, ACS Applied Materials & Interfaces, 8, 2016, 9116-9124.
[56] F. Zou, Z. Cui, and H. C. Nallan et al., Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron, ACS Applied Materials & Interfaces, 4, 2021, 13297-13306.
[57] T.A. Arunkumar and A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4, Electrochimica Acta, 50, 2005, 5568-5572.
[58] A. Bhaskar, W. Gruner, and D. Mikhailova et al., Thermal stability of Li1−ΔM0.5Mn1.5O4 (M = Fe, Co, Ni) cathodes in different states of delithiation Δ, RSC Advances, 2013, 3, 5909-5916.
[59] N. Kiziltas-Yavuz, M. Yavuz, and S. Indris et al., Enhancement of electrochemical performance by simultaneous substitution of Ni and Mn with Fe in Ni-Mn spinel cathodes for Li-ion batteries, Journal of Power Sources, 327, 2016, 507-518.
[60] E. Lester, G. Aksomaityte, and J. Li et al, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Progress in Crystal Growth and Characterization of Materials, 58, 2012, 3-13.
[61] M.A. Jalil, M.N.I. Khan, and S. Mandal et al, Impact of reaction temperatures on the particle size of V2O5 synthesized by facile hydrothermal technique and their auspicious photocatalytic performance in dye degradation, AIP Advances,13,2023, 015010.
[62] R. Sibille, A. Mesbah, and T. Mazet et al., Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn (C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4), Journal of Solid State Chemistry, 186, 2012,134-141.
[63] A. Mesbah, B. Malaman, and T. Mazet et al., Location of metallic elements in (Co1−xFex)2(OH)2(C8H4O4): use of MAD, neutron diffraction and 57Fe Mössbauer spectroscopy, CrystEngComm, 12, 2010, 3126-3131.
[64] L. Si, L. Yue, and D. Jin et al., Solvothermal synthesis of flower-like lanthanum tartrate and lanthanum oxide microspheres in ethanol-water mixed system, Crystal Research and Technology, 46, 2011, 1149-1154.
[65] H. Chen and H.Y. Chang, Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242, 2004, 61-69.
[66] Z. Wang, Y. Liu, and C. Gao et al., A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors, Journal of Materials Chemistry A, 3, 2015, 20658-20663.
[67] S. He, Z. Li, and J. Wang et al., MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors, RSC Advances, 6, 2016, 49478-49486.
[68] J. Zhang, G. Sun, and Y. Han et al., Boosted electrochemical performance of LiNi0.5Mn1.5O4 via synergistic modification of Li+-Conductive Li2ZrO3 coating layer and superficial Zr-doping, Electrochimica Acta, 343, 2020, 136105.
[69] N. Kiziltas-Yavuz, A. Bhaskar, and D. Dixon et al., Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping, Journal of Power Sources , 267, 2014, 533-541.
[70] M.M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries, Journal of The Electrochemical Society, 142, 1995, 2558–2563.
[71] Y.K. Sun, K.H. Lee, and S.I. Moon et al., Effect of crystallinity on the electrochemical behaviour of spinel Li1.03Mn2O4 cathode materials, Solid State Ionics, 112, 1998, 237-243.
[72] J.H. Kim, A. Huq, and M. Chi et al., Integrated nano-domains of disordered and ordered spinel phases in LiNi0.5Mn1.5O4 for li-ion batteries, Chemistry of Materials, 26, 2014, 4377-4386.
[73] C. J. Jafta, M. K. Mathe, and N. Manyala et al., Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: Tuning the Mn3+ content and electrochemical performance, ACS Applied Materials & Interfaces, 5, 2013, 7592−7598.
[74] F. Guzel, H. Yakut, and G. Topal, Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II),Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues, Journal of Hazardous Materials, 153, 2008, 1275-1287.
[75] D.O. Miles, D. Jiang, and A.D. Burrows et al., Conformal transformation of [Co (bdc) (DMF)] (Co-MOF-71, bdc = 1, 4-benzenedicarboxylate, DMF = NN-dimethylformamide) into porous electrochemically active cobalt hydroxide, Electrochemistry Communications, 27, 2013, 9-13.
[76] A. Bhaskar, S. Krueger, and V. Siozios et al., Synthesis and Characterization of High-Energy, High-Power Spinel-Layered Composite Cathode Materials for LithiumIon Batteries, Advanced Energy Materials, 5, 2014, 1401156.
[77] G.B. Zhong, Y.Y. Wang, and Y.Q. Yu et al., Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205, 2012, 385-393.
[78] Y. Maeda, K. Ariyoshi, and T. Kawai et al., Effect of deviation from Ni/Mn stoichiometry in Li[Ni1/2Mn3/2]O4 upon rechargeable capacity at 4.7 V in nonaqueous lithium cells, Journal of the Ceramic Society of Japan, 117, 2009, 1216-1220.
[79] Y.H. Liu, T.Y. Tsai, Improving electrochemical performance of lithium ion batteries using a binder-free carbon fiber-based LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 cathode with a conventional electrolyte, Journal of Power Sources, 484, 2021, 229262.
[80] M.C. Kim, Y.W. Lee, and T.K. Pham et al., Chemical valence electron-engineered LiNi0.4Mn1.5MtO4 (Mt = Co and Fe) cathode materials with high-performance electrochemical properties, Applied Surface Science, 504, 2020, 144514.
[81] J.H. Kim, S.T. Myung, and C.S. Yoon et al., Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332, Chemistry of Materials, 16, 2004, 906-914.
[82] S.K. Hong, S.I. Mho, and I.H. Yeo et al., Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes, Electrochimica Acta, 156, 2015, 29-37.
[83] S. Chong, Y. Chen, and W. Yan et al., Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries, Journal of Power Sources, 332, 2016, 230-239.
[84] T. Zhao, Y. Zhang, and Y. Li et al., Electrochemical activation of novel Fe-based Li-rich cathode material for lithium-ion batteries, Journal of Alloys and Compounds, 741, 2018 597-603.
[85] B. Li, Y. Yu, and J. Zhao, Facile synthesis of spherical xLi2MnO3·(1–x)Li (Mn0.33Co0.33Ni0.33)O2 as cathode materials for lithium-ion batteries with improved electrochemical performance, Journal of Power Sources, 275, 2015, 64-72.
[86] M. Herstedt, A.M. Andersson, and H. Rensmo et al., Characterisation of the SEI formed on natural graphite in PC-based electrolytes, Electrochimica Acta, 49, 2004, 4939-4947.
[87] S. Yoon, Effect of nitridation on LiMn1.5Ni0.5O4 and its application as cathode material in lithium-ion batteries, Journal of Applied Electrochemistry, 46, 2016, 479-485.
[88] J. Xiao, X. Chen, and P. V. Sushko et al., High-performance LiNi0.5MnO4 Spinel controlled by Mn3+ concentration and site disorder, Advanced Materials, 24, 2012, 2109–2116.
[89] C. Yin, H. Zhou, and Z. Yang et al., Synthesis and Electrochemical Properties of LiNi0.5Mn1.5O4 for Li-Ion Batteries by the Metal–Organic Framework Method, ACS Applied Materials & Interfaces, 10, 2018, 13625-13634.
[90] Q. Chen, H. Liu, and J. Hao et al., Synthesis and characterization of high-performance RGO-modified LiNi0.5Mn1.5O4 nanorods as a high power density cathode material for Li-ion batteries, Ionics, 25, 2019, 99-109.
[91] J. Wang, W. Lin, and B. Wu et al., Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries, Electrochimica Acta, 145, 2014, 245-253.
[92] X. Nie, B. Zhong, and M. Chen et al., Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermos polymerization technique, Electrochimica Acta, 97, 2013, 184-191.
[93] X. Fang, M. Ge, and J. Rong et al., Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life, Journal of Materials Chemistry A, 1, 2013, 4083-4088.
[94] L. Wang, J. Zhao, and J. Gao et al., Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries, International Journal of Electrochemical Science, 7, 2012, 345-353.
[95] S. Klein, P. Harte, and Jonas Henschel et al., On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523∥Graphite Lithium Ion Cells Under High-Voltage Conditions, Advanced Energy Materials, 11, 2021, 2003756.
[96] A.T.S. Freiberg, M.K. Roos, and J. Wandt et al., Singlet Oxygen Reactivity with Carbonate Solvents used for Li-Ion Battery Electrolytes, The Journal of Physical Chemistry A, 122, 2018, 8828–8839.

[97] V. Kraft, W. Weber, and B. Streipert et al., Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method, RSC Advances, 6, 2016, 8-17.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明