博碩士論文 110324073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.117.81.240
姓名 邱宥善(Yu-Shan Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
(First Principles Study of Blue Phosphorene Heterostructures as Li-Ion Battery Anode Material)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 鋰離子電池因其出色的安全性、穩定性、便攜性和能源效率,成為可攜式電子產品和電動車必不可缺的技術。尤其是近年電動汽車發展蓬勃,對鋰離子電池的容量性能需求旺盛。其中,負極材料著實影響電池的性能。因此尋找高容量、高倍率性能的負極材料是此領域研究的重點。
2014年理論成功預測出藍磷烯結構,與石墨烯相似的層狀結構。藍磷烯具有較大的表面積,可為鋰存儲提供更多空間。 這種結構特徵被認為是鋰離子電池高性能負極的潛力材料。此外,單層藍磷烯的理論比電容量為865 mAh/g,高於石墨烯的372 mAh/g比電容量。
在本研究中,將藍磷烯與具有優異電化學特性的矽烯結合,形成雙層異質結構,提高比電容量和倍率性能。利用密度泛函理論 (density functional theory),計算得到藍磷烯/矽烯雙層異質結構的電子結構及能量表現。同樣利用DFT計算找到鋰在異質結構中穩定吸附位點與吸附能量,並研究鋰擴散路徑與擴散能障。最後,探討鋰嵌入藍磷烯/矽烯的電性表現及機械性質。
摘要(英) Li-ion batteries (LIBs) are used as an indispensable technology in portable electronic products and electric vehicles due to their excellent stability, safety, portability, and energy efficiency. Especially in recent years, with the vigorous development of electric vehicles, there is a strong demand for the performance of LIBs. The anode material has a decisive influence on its performance. Therefore, finding anode materials with high capacity is the key to LIBs technology.
Blue phosphorene structure was successfully predicted theoretically in 2014, which has a layered structure similar to graphene. It has the larger surface area, providing more lithium storage space. This structural feature is regarded as ideal for high performance anode materials for LIBs. The theoretical capacity of a single-layer of blue phosphorene is 865 mAh/g, which exceeds graphene′s capacity of 372 mAh/g.
In this study, we combined blue phosphorene with silicene, which has excellent electrochemical characteristics. We expect to form a bilayer heterostructure to improve specific capacitance and electronic conductivity. The formation energy and electronic structure of the blue phosphorene/silicene bilayer heterostructure were obtained using density functional theory (DFT) calculations. Find the adsorption/intercalation sites and diffusion behavior of lithium in the heterostructure. Finally, we confirm the electrical performance and mechanical properties of lithium intercalated blue phosphorene/silicene heterostructure.
關鍵字(中) ★ 第一原理計算
★ 鋰離子電池
★ 二維材料
★ 異質結構
★ 藍磷烯
關鍵字(英) ★ Li-ion battery
★ two-dimensional materials
★ density function theory
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vii
List of Tables xi
Chapter 1 Background 1
1-1 Introduction 1
1-2 Literature review 4
1-2-1 Li-ion battery 4
1-2-2 Anode materials 5
1-2-3 Blue phosphorene 10
Chapter 2 Theory 16
2-1 Density functional theory (DFT) 16
2-2 Hohenberg-Kohn theorem 18
2-3 Kohn-Sham equation 19
2-4 Exchange correlation energy approximation 20
2-5 Self-consistent field (SCF) 21
2-6 Basis set 22
2-7 Cutoff energy 23
2-8 Brillouin zone 24
2-9 K-point sampling 25
2-10 Pseudopotential 26
Chapter 3 Computational Details 29
3-1 Visualizer software 29
3-2 CASTEP (Cambridge Serial Total Energy Package) 30
3-3 Model construction 30
3-4 Convergence testing 31
3-5 Geometry optimization 34
Chapter 4 Results and Discussion 36
4-1 Structure with geometry optimization 36
4-1-1 Single layer materials geometry optimization 36
4-1-2 Combine BP and silicene 37
4-1-3 BP/Si heterostructure geometry optimization 42
4-2 Electronic properties of BP/Si heterostructure 44
4-2-1 Band structures of BP/Si heterostructure 44
4-2-2 Density of states of BP/Si heterostructure 46
4-3 Li adsorption/intercalation in the BP/Si heterostructure
48
4-4 Li diffusion in the BP/Si heterostructure 54
4-5 Energy performance of BP/Si heterostructure 62
4-6 Mechanical properties of single layer BP and silicene 66
4-7 Electronic properties of Li intercalated BP/Si heterostructure 69
Chapter 5 Conclusions 75
Chapter 6 Future Work 76
References 77
參考文獻 1. Kang, B. and G. Ceder, “Battery materials for ultrafast charging and discharging.” Nature, 458(7235), 2009, p. 190-193.
2. Marom, R., et al., “A review of advanced and practical lithium battery materials.” Journal of Materials Chemistry, 21(27), 2011, p. 9938-9954.
3. Aghamohammadi, H., N. Hassanzadeh, and R. Eslami-Farsani, “A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries.” Ceramics International, 47(16), 2021, p. 22269-22301.
4. Goriparti, S., et al., “Review on recent progress of nanostructured anode materials for Li-ion batteries.” Journal of Power Sources, 257, 2014, p. 421-443.
5. Ji, L., et al., “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.” Energy & Environmental Science, 4(8), 2011, p. 2682-2699.
6. Zhang, L., et al., “Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes.” Advanced Functional Materials, 31(1), 2021, p. 2005471.
7. Zhang, X., et al., “A record-high ion storage capacity of T-graphene as two-dimensional anode material for Li-ion and Na-ion batteries.” Applied Surface Science, 527, 2020, p. 146849.
8. Zhang, X., et al., “Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.” Nanoscale, 8(33), 2016, p. 15340-15347.
9. Zhu, Z. and D. Tomanek, “Semiconducting layered blue phosphorus: a computational study.” Phys Rev Lett, 112(17), 2014, p. 176802.
10. Li, Q.F., et al., “Theoretical Prediction of Anode Materials in Li-Ion Batteries on Layered Black and Blue Phosphorus.” Journal of Physical Chemistry C, 119(16), 2015, p. 8662-8670.
11. Mukherjee, S., L. Kavalsky, and C.V. Singh, “Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes.” ACS Appl Mater Interfaces, 10(10), 2018, p. 8630-8639.
12. Barik, G. and S. Pal, “Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries.” The Journal of Physical Chemistry C, 123(5), 2019, p. 2808-2819.
13. Tritsaris, G.A., et al., “Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage.” Nano Letters, 13(5), 2013, p. 2258-2263.
14. Zhuang, J., et al., “Silicene: A Promising Anode for Lithium-Ion Batteries.” Advanced Materials, 29(48), 2017, p. 1606716.
15. Seyed-Talebi, S.M., I. Kazeminezhad, and J. Beheshtian, “Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries.” Phys Chem Chem Phys, 17(44), 2015, p. 29689-96.
16. Ghiji, M., et al., “A Review of Lithium-Ion Battery Fire Suppression.” Energies, 13(19), 2020, p. 5117.
17. Nitta, N., et al., “Li-ion battery materials: present and future.” Materials Today, 18(5), 2015, p. 252-264.
18. Zang, X., et al., “Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries.” Nano, 14(02), 2019, p. 1930001.
19. Lian, P., et al., “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries.” Electrochimica Acta, 55(12), 2010, p. 3909-3914.
20. Chen, D., et al., “Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material.” Industrial & Engineering Chemistry Research, 53(46), 2014, p. 17901-17908.
21. Barik, G. and S. Pal, “Monolayer Transition-Metal Dichalcogenide Mo1–xWxS2 Alloys as Efficient Anode Materials for Lithium-Ion Batteries.” The Journal of Physical Chemistry C, 122(45), 2018, p. 25837-25848.
22. Golias, E., et al., “Band Renormalization of Blue Phosphorus on Au(111).” Nano Letters, 18(11), 2018, p. 6672-6678.
23. Bao, J.N., et al., “Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries.” Journal of Physical Chemistry C, 122(41), 2018, p. 23329-23335.
24. Li, Y., W. Wu, and F. Ma, “Blue phosphorene/graphene heterostructure as a promising anode for lithium-ion batteries: a first-principles study with vibrational analysis techniques.” Journal of Materials Chemistry A, 7(2), 2019, p. 611-620.
25. Schrödinger, E., “An Undulatory Theory of the Mechanics of Atoms and Molecules.” Physical Review, 28(6), 1926, p. 1049-1070.
26. Hohenberg, P. and W. Kohn, “Inhomogeneous Electron Gas.” Physical Review, 136(3B), 1964, p. B864-B871.
27. Kohn, W. and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects.” Physical Review, 140(4A), 1965, p. A1133-A1138.
28. Perdew, J.P. and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation.” Physical Review B, 33(12), 1986, p. 8800-8802.
29. Monkhorst, H.J. and J.D. Pack, “Special points for Brillouin-zone integrations.” Physical Review B, 13(12), 1976, p. 5188-5192.
30. Payne, M.C., et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.” Reviews of Modern Physics, 64(4), 1992, p. 1045-1097.
31. Furthmüller, J., J. Hafner, and G. Kresse, “Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials.” Physical Review B, 50(21), 1994, p. 15606-15622.
32. BIOVIA, D.S., BIOVIA Material Studio, 8.0, San Diego: Dassault Systèmes, 2014.
33. Clark, S.J., et al., “First principles methods using CASTEP.” Zeitschrift Fur Kristallographie, 220(5-6), 2005, p. 567-570.
34. Xu, S., et al., “Adsorption of Li on single-layer silicene for anodes of Li-ion batteries.” Physical Chemistry Chemical Physics, 20(13), 2018, p. 8887-8896.
35. Segall, M.D., et al., “First-principles simulation: ideas, illustrations and the CASTEP code.” Journal of Physics: Condensed Matter, 14(11), 2002, p. 2717.
36. Vanderbilt, D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.” Physical Review B, 41(11), 1990, p. 7892-7895.
37. Perdew, J.P., K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple.” Physical Review Letters, 77(18), 1996, p. 3865-3868.
38. Grimme, S., “Semiempirical GGA-type density functional constructed with a long-range dispersion correction.” Journal of Computational Chemistry, 27(15), 2006, p. 1787-1799.
39. Koma, A., “Van der Waals epitaxy for highly lattice-mismatched systems.” Journal of Crystal Growth, 201, 1999, p. 236-241.
40. Ahammed, R., et al., “ZrS3/MS2 and ZrS3/MXY (M=Mo, W; X, Y=S, Se, Te; X ≠ Y) type-II van der Waals hetero-bilayers: Prospective candidates in 2D excitonic solar cells.” Applied Surface Science, 499, 2020, p. 143894.
41. Dai, X.Y., et al., “Electronic transport properties of phosphorene/graphene (silicene/germanene) bilayer heterostructures: A first-principles exploration.” Ceramics International, 45(9), 2019, p. 11584-11590.
42. Hu, W., et al., “Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers.” Journal of Materials Chemistry C, 4(9), 2016, p. 1776-1781.
43. Ares, P., et al., “Van der Waals interaction affects wrinkle formation in two-dimensional materials.” Proceedings of the National Academy of Sciences, 118(14), 2021, p. e2025870118.
44. Deng, S.K. and V. Berry, “Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications.” Materials Today, 19(4), 2016, p. 197-212.
45. Wang, V., et al., “High-Throughput Computational Screening of Two-Dimensional Semiconductors.” The Journal of Physical Chemistry Letters, 13(50), 2022, p. 11581-11594.
46. Lin, H., et al., “Metallic VS2/blue phosphorene heterostructures as promising anode materials for high-performance lithium ion batteries: A first principles study.” Applied Surface Science, 533, 2020, p. 147478.
47. Schoop, L.M., et al., “Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.” Nat Commun, 7(1), 2016, p. 11696.
48. Mortazavi, B., et al., “Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation.” Electrochimica Acta, 213, 2016, p. 865-870.
49. Li, Q.F., J.C. Yang, and L. Zhang, “Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries.” Journal of Physical Chemistry C, 122(32), 2018, p. 18294-18303.
50. Ubaid, M., A. Aziz, and B.S. Pujari, “Two-dimensional C3N/blue phosphorene vdW heterostructure for Li, Na and K-ion batteries.” New Journal of Chemistry, 45(28), 2021, p. 12647-12654.
51. Wang, Y. and Y. Li, “Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries.” Journal of Materials Chemistry A, 8(8), 2020, p. 4274-4282.
52. Reuter, K. and M. Scheffler, “Composition, structure, and stability of RuO2(110) as a function of oxygen pressure.” Physical Review B, 65(3), 2001, p. 035406.
53. Soon, A., et al., “Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation.” Physical Review B, 75(12), 2007, p. 125420.
54. Ge, X.J., K.L. Yao, and J.T. Lu, “Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene.” Physical Review B, 94(16), 2016, p. 165433.
55. Togo, A. and I. Tanaka, “First principles phonon calculations in materials science.” Scripta Materialia, 108, 2015, p. 1-5.
56. Ji, Y., et al., “Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li–O2 batteries.” Physical Chemistry Chemical Physics, 19(31), 2017, p. 20457-20462.
57. Li, H., et al., “Hydrogenated borophene/blue phosphorene: A novel two-dimensional donor-acceptor heterostructure with shrunken interlayer distance as a potential anode material for Li/Na ion batteries.” Journal of Physics and Chemistry of Solids, 155, 2021, p. 110108.
58. Kang, K., D. Morgan, and G. Ceder, “First principles study of Li diffusion in I-Li2NiO2 structure.” Physical Review B, 79(1), 2009, p. 014305.
59. Van der Ven, A. and G. Ceder, “First principles calculation of the interdiffusion coefficient in binary alloys.” Phys Rev Lett, 94(4), 2005, p. 045901.
60. Wu, K.-C., C.-M. Hsieh, and B.K. Chang, “First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO4.” Physical Chemistry Chemical Physics, 24(2), 2022, p. 1147-1155.
61. Poon, J., et al., “Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient.” Chem Sci, 6(5), 2015, p. 2869-2876.
62. Galashev, A.Y. and K.A. Ivanichkina, “Computer Test of a New Silicene Anode for Lithium-Ion Batteries.” Chemelectrochem, 6(5), 2019, p. 1525-1535.
63. Muhammad, N., M.U. Muzaffar, and Z.J. Ding, “Black phosphorene/blue phosphorene van der Waals heterostructure: a potential anode material for lithium-ion batteries.” Physical Chemistry Chemical Physics, 23(32), 2021, p. 17392-17401.
64. Yu, T., et al., “Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery.” Journal of Materials Chemistry A, 5(35), 2017, p. 18698-18706.
65. Wu, F., J. Maier, and Y. Yu, “Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.” Chemical Society Reviews, 49(5), 2020, p. 1569-1614.
66. Topsakal, M., S. Cahangirov, and S. Ciraci, “The response of mechanical and electronic properties of graphane to the elastic strain.” Applied Physics Letters, 96(9), 2010.
67. Kang, J., et al., “Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet.” The Journal of Physical Chemistry C, 115(42), 2011, p. 20466-20470.
68. Yildirim, T., et al., “Towards future physics and applications via two-dimensional material NEMS resonators.” Nanoscale, 12(44), 2020, p. 22366-22385.
69. Şahin, H., et al., “Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations.” Physical Review B, 80(15), 2009, p. 155453.
指導教授 張博凱 謝介銘(Bor Kae Chang Chieh-Ming Hsieh) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明