博碩士論文 110324079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.190.219.181
姓名 楊文旺(Wen-Wang Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 於矽奈米線場效應電晶體利用核酸適體 三明治法檢測心肌肌鈣蛋白I之研究
(Aptamer Sandwich Assay for an Ultra-high Sensitivity Detection of Cardiac Troponin I by Silicon Nanowire Field-effect Transistor)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 急性心肌梗塞 (Acute myocardial infarction, AMI) 為全球心血管相關疾病的主要死亡原因,當發生心肌梗塞時,心肌會釋放不同心臟生物標誌物,其中心肌肌鈣蛋白I (cardiac troponin I, cTnI) 對於急性心肌梗塞具有極高專一性,因此被視為檢測急性心肌梗塞的黃金標準。
目前多數實驗室使用歐洲心臟協會(European Society of Cardiology, ESC) 的0/1-h algorithm作為急性心肌梗塞早期診斷的方式,依據在第0小時血液中的cTnI濃度與1小時後的濃度變化對病患進行分類,因此檢測平台的靈敏度與解析度是診斷的一大重點。此外,急性心肌梗塞與心臟病發及心臟驟停密切相關,若能在抵達急診室前進行檢測,有助於提早預判病患之病程,降低死亡率。為了實現上述目標,發展高靈敏性與解析度的定點照護 (Point of care, POC) 設備是必要的。
矽奈米線場效應電晶體 (Silicon nanowire field effect transistors, SiNW-FETs) 因其具有高靈敏性、即時檢測、免標定與易攜帶等優點,被視為極具發展潛力檢測平台。此外,使用兩種對於cTnI有著不同結合位點的核酸適體 (Aptamer, Tro4 & Tro6) 做為檢測探針,透過三明治法 (Sandwich assay) 進行檢測,不僅增加檢測專一性,也有放大檢測訊號的可能性。
本研究使用Mixed-SAMs (silane-PEG-NH2:silane-PEG-OH = 1:
10 (mM/mM)) 與戊二醛 (Glutaraldehyde) 對SiNWFET表面進行表面改質,完成Tro4的表面固定化。接著,透過原子力顯微鏡以及化學分析線光子能譜儀,進行表面改質確認。我們也使用COB (Chip on board) 系統於不同鹽離子濃度的環境下檢測cTnI,確認最佳檢測環境。最後,藉由COB系統確認加入Tro6對於cTnI檢測之影響。
由研究結果得知,使用核酸適體三明治 (Aptamer sandwich assay),並在高鹽離子濃度 (1xPBS) 下進行檢測,加入Tro6的電訊號變化量與未加入前相比有著顯著的提升。此外,在高鹽離子濃度下可以維持核酸適體與cTnI的結合穩定性,因此cTnI與電訊號有著更高的相關性,且解析度更大。在最佳化條件下檢測臨床檢體中的cTnI濃度,透過1xPBS與血漿樣品稀釋液進行稀釋,分別得到LOD為0.151 pg/mL及0.861 pg/mL,解析度為0.012 pg/mL與0.525 pg/mL,低於許多臨床檢測所需,證實本研究製備的cTnI生物感測器在臨床應用上具有很高的診斷潛力。
摘要(英) Rapid diagnosis and treatment for acute myocardial infarction (AMI), which is closely related to heart attacks and cardiac arrests and is the leading cause of death from cardiovascular diseases worldwide, is essential to save patient’s life. Among the cardiac biomarkers which are released from the cardiac muscle when AMI occurs, cardiac troponin I (cTnI) is regarded as the “gold standard” for AMI diagnosis because of its high specificity and sensitivity to this disease. Currently, most laboratories use the 0/1-h algorithm of the European Society of Cardiology (ESC) as the method for early diagnosis of AMI. This approach combines a very low cTnI at the initial emergency department (ED) presentation and dynamic change of cTnI values between 0 and 1 hour to triage patients into rule-out, observation, and rule-in categories. To achieve the above objectives, ultrasensitive and high-resolution point of care test (POCT) equipment must be developed.
The silicon nanowire field effect transistors (SiNWFETs) were used as the detection platform because of have many advantages, such as high sensitivity, label-free detection, and real-time detection. In addition, we used two aptamers (Tro4 & Tro6) that have different binding sites for cTnI, and detect cTnI via sandwich detection. This detection technique not only has high specificity but also amplifies the signal.
In this study, we fabricated the biosensor by modifying the SiNWFETs with Mixed-SAMs (silane-PEG-NH2:silane-PEG-OH =1:10 (mM/mM)) and Glutaraldehyde to immobilize Tro4 aptamer and detect cTnI. The surface modification is confirmed by Atomic force microscopy (AFM) and Electron Spectroscopy for Chemical Analysis (ESCA) whereas the cTnI was detected in different salt concentrations by the COB (Chip on board) system to determine the optimal detection condition. Finally, the effect of adding the signal probe (aptamer, Tro6) on cTnI detection was confirmed by the COB system.
Based on the results of the study, the correlation between cTnI and electrical signals was found to be high when the Aptamer sandwich assay and high salt ion concentration (1xPBS) detection methods were used. Because the sandwich assay improves detection specificity, and at high salt concentrations, it maintains binding stability for aptamer and cTnI. Finally, under optimal conditions, the concentration of cTnI in clinical specimens was detected using a dilution of 1xPBS and plasma sample diluent. The limits of detection (LOD) obtained were 0.151 pg/mL and 0.861 pg/mL, with resolutions of 0.01 pg/mL and 0.53 pg/mL, respectively. These results are lower than the requirements for clinical assays, proving our device has a good potential to be used in the clinical assay.
關鍵字(中) ★ 矽奈米線場效電晶體
★ 生物感測器
★ 核酸適體三明治法
★ 心肌肌鈣蛋白I檢測
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧 3
2.1 核酸適體介紹 3
2.1.1 核酸適體 3
2.1.2 Systematic Evolution of Ligands by Exponential Enrichment 4
2.1.3 核酸適體與抗體之比較 6
2.1.4 核酸適體於場效應電晶體之應用 8
2.2 急性心肌梗塞介紹 11
2.2.1 急性心肌梗塞 (Acute myocardial infarction, AMI) 11
2.2.2 心臟生物標誌物 14
2.2.3 心肌肌鈣蛋白 (Cardiac troponin, cTn) 16
2.2.4 急性心肌梗塞之診斷 19
2.2.5 急性心肌梗塞診斷之瓶頸 22
2.3 心肌肌鈣蛋白I之檢測 23
2.3.1 cTnI之檢測 23
2.3.2 cTn檢測之市售設備 27
2.4 矽奈米線場效應電晶體 30
2.5 晶片表面改質 36
2.5.1 自組裝單層膜 36
2.5.2 表面分子固定化 39
2.5.3 聚乙二醇 (Polyethylene glycol, PEG) 於自組裝單層膜應用 41
第三章 實驗藥品、儀器與方法 44
3.1 實驗架構 44
3.2 實驗藥品 46
3.3 儀器設備 48
3.4 緩衝液配置 49
3.5 實驗步驟 50
3.5.1 FETs表面改質 50
3.5.2 FETs電訊號量測 55
3.5.3 原子力顯微鏡(AFM)表面粗糙度分析 57
3.5.4 化學分析光電子能譜儀 (ESCA) 表面元素組成分析 57
3.5.5 Enzyme-linked immunosorbent assay (ELISA) 核酸適體-抗原結合穩定性測定 58
第四章 結果與討論 60
4.1 表面改質之鑑定 60
4.1.1 原子力顯微鏡 (AFM) 60
4.1.2 化學分析光電子能譜儀 (ESCA) 63
4.2 不同鹽濃度對於檢測cTnI之影響 67
4.2.1 檢測環境鹽濃度對於Tro4與cTnI之結合穩定性 67
4.2.2 不同鹽濃度下之SiNWFETs 電訊號 69
4.3 利用核酸適體三明治法 (Aptamer sandwich assay) 進行cTnI檢測 73
4.4 cTnI於人類體液中之定量分析 78
4.5 cTnI臨床檢體之定量分析 80
第五章 結論 82
第六章 未來展望 84
第七章 參考文獻 85
參考文獻 1. Nimjee, S.M., C.P. Rusconi, and B.A. Sullenger, Aptamers: an emerging class of therapeutics. Annu. Rev. Med., 2005. 56: p. 555-583.
2. Sun, H. and Y. Zu, A highlight of recent advances in aptamer technology and its application. Molecules, 2015. 20(7): p. 11959-11980.
3. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science, 1990. 249(4968): p. 505-510.
4. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818-822.
5. Stoltenburg, R., C. Reinemann, and B. Strehlitz, SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering, 2007. 24(4): p. 381-403.
6. McKeague, M., et al., Analysis of in vitro aptamer selection parameters. Journal of Molecular Evolution, 2015. 81: p. 150-161.
7. Jenison, R.D., et al., High-resolution molecular discrimination by RNA. Science, 1994. 263(5152): p. 1425-1429.
8. Darmostuk, M., et al., Current approaches in SELEX: An update to aptamer selection technology. Biotechnology advances, 2015. 33(6): p. 1141-1161.
9. Wu, Y.X. and Y.J. Kwon, Aptamers: The “evolution” of SELEX. Methods, 2016. 106: p. 21-28.
10. Ștefan, G., et al., Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta, 2021. 376: p. 137994.
11. Mascini, M., Aptamers and their applications. Analytical and bioanalytical chemistry, 2008. 390(4): p. 987-988.
12. Ferreira, C.S. and S. Missailidis, Aptamer-based therapeutics and their potential in radiopharmaceutical design. Brazilian archives of biology and technology, 2007. 50: p. 63-76.
13. Jayasena, S.D., Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical chemistry, 1999. 45(9): p. 1628-1650.
14. Iliuk, A.B., L. Hu, and W.A. Tao, Aptamer in bioanalytical applications. Analytical chemistry, 2011. 83(12): p. 4440-4452.
15. Nakatsuka, N., et al., Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018. 362(6412): p. 319-324.
16. Sheibani, S., et al., Extended gate field-effect-transistor for sensing cortisol stress hormone. Communications materials, 2021. 2(1): p. 10.
17. Hu, W.-P., et al., Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors. Sensors, 2023. 23(2): p. 625.
18. Vu, C.-A., et al., Signal enhancement of silicon nanowire field-effect transistor immunosensors by RNA aptamer. ACS omega, 2019. 4(12): p. 14765-14771.
19. 潘品憲, 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 112.
20. Cardiovascular diseases (CVDs). 2021; Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
21. Noncommunicable diseases. 2022; Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
22. Du, X., et al., Progress, opportunities, and challenges of troponin analysis in the early diagnosis of cardiovascular diseases. Analytical Chemistry, 2021. 94(1): p. 442-463.
23. Thygesen, K., et al., Fourth universal definition of myocardial infarction (2018). Circulation, 2018. 138(20): p. e618-e651.
24. Aydin, S., et al., Biomarkers in acute myocardial infarction: current perspectives. Vascular health and risk management, 2019: p. 1-10.
25. Szunerits, S., et al., Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosensors and Bioelectronics, 2019. 131: p. 287-298.
26. Hasanzadeh, M., et al., Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. TrAC Trends in Analytical Chemistry, 2013. 49: p. 20-30.
27. Ahammad, A.S., et al., Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int. J. Electrochem. Sci, 2011. 6(6): p. 1906-1916.
28. Gaze, D.C. and P.O. Collinson, Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Annals of clinical biochemistry, 2008. 45(4): p. 349-355.
29. Wu, A.H., et al., National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clinical chemistry, 1999. 45(7): p. 1104-1121.
30. Anderson, J.L., et al., ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Journal of the American College of Cardiology, 2007. 50(7): p. e1-e157.
31. Katrukha, A.G., et al., Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clinical chemistry, 1997. 43(8): p. 1379-1385.
32. Rubini Gimenez, M., et al., Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. European heart journal, 2014. 35(34): p. 2303-2311.
33. Jacobs, L., A. Mingels, and M. van Dieijen-Visser, Cardiac biomarkers in end-stage renal disease. Sahay M. Chronic Kidney Disease and Renal Transplantation. Rijeka, Croatia: InTech, 2012: p. 147-60.
34. Apple, F.S., et al., Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clinical chemistry, 2017. 63(1): p. 73-81.
35. UK, C.B., et al., 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. 2015.
36. Koechlin, L., et al., Diagnostic discrimination of a novel high-sensitivity cardiac troponin I assay and derivation/validation of an assay-specific 0/1h-algorithm. American Heart Journal, 2023. 255: p. 58-70.
37. Larsson, A., R. Greig-Pylypczuk, and A. Huisman, The state of point-of-care testing: a European perspective. Upsala journal of medical sciences, 2015. 120(1): p. 1-10.
38. Stopyra, J.P., et al., Point-of-care troponin testing during ambulance transport to detect acute myocardial infarction. Prehospital Emergency Care, 2020. 24(6): p. 751-759.
39. Jo, H., et al., Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Analytical chemistry, 2015. 87(19): p. 9869-9875.
40. Zhang, J., T. Lakshmipriya, and S.C. Gopinath, Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates. ACS omega, 2020. 5(40): p. 25899-25905.
41. Rodrigues, T., et al., Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury. Nano Today, 2022. 43: p. 101391.
42. Qiao, X., et al., Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosensors and Bioelectronics, 2018. 113: p. 142-147.
43. Lopa, N.S., et al., Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil. Biosensors and Bioelectronics, 2019. 126: p. 381-388.
44. Shen, J., et al., Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chemical Reviews, 2014. 114(15): p. 7631-7677.
45. Jo, H., et al., Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta, 2017. 165: p. 442-448.
46. Kitte, S.A., et al., Plasmon-enhanced quantum dots electrochemiluminescence aptasensor for selective and sensitive detection of cardiac troponin I. Talanta, 2021. 221: p. 121674.
47. Luo, Z., et al., DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchimica Acta, 2019. 186: p. 1-10.
48. Tu, D., A. Holderby, and G.L. Coté, Aptamer-based surface-enhanced resonance Raman scattering assay on a paper fluidic platform for detection of cardiac troponin I. Journal of biomedical optics, 2020. 25(9): p. 097001-097001.
49. Twerenbold, R., et al., Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. Journal of the American College of Cardiology, 2019. 74(4): p. 483-494.
50. Nowak, R.M., et al., Performance of novel high-sensitivity cardiac troponin I assays for 0/1-hour and 0/2-to 3-hour evaluations for acute myocardial infarction: results from the HIGH-US study. Annals of emergency medicine, 2020. 76(1): p. 1-13.
51. Baryeh, K., et al., Introduction to medical biosensors for point of care applications, in Medical biosensors for point of care (POC) applications. 2017, Elsevier. p. 3-25.
52. Savonnet, M., et al., Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. Journal of Pharmaceutical and Biomedical Analysis, 2021. 194: p. 113777.
53. Kong, T., et al., CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. Biosensors and Bioelectronics, 2012. 34(1): p. 267-272.
54. Chua, J.H., et al., Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Analytical chemistry, 2009. 81(15): p. 6266-6271.
55. Kim, K., et al., Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics, 2016. 77: p. 695-701.
56. Prakash, M.D., et al., A study of an ultrasensitive label free silicon nanowire FET biosensor for cardiac troponin I detection. Silicon, 2022. 14(10): p. 5683-5690.
57. Chang, S.-M., et al., Utilization of silicon nanowire field-effect transistors for the detection of a cardiac biomarker, cardiac troponin I and their applications involving animal models. Scientific reports, 2020. 10(1): p. 22027.
58. Lee, C.-S., S.K. Kim, and M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors, 2009. 9(9): p. 7111-7131.
59. Yang, F. and G.-J. Zhang, Silicon nanowire-transistor biosensor for study of molecule-molecule interactions. Reviews in Analytical Chemistry, 2014. 33(2): p. 95-110.
60. Syu, Y.-C., W.-E. Hsu, and C.-T. Lin, Field-effect transistor biosensing: Devices and clinical applications. ECS Journal of Solid State Science and Technology, 2018. 7(7): p. Q3196.
61. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science, 2001. 293(5533): p. 1289-1292.
62. Chang, R., et al., Water near bioinert self-assembled monolayers. Polymer Journal, 2018. 50(8): p. 563-571.
63. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): p. 1533-1554.
64. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
65. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
66. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates, 2007. 33: p. 269-284.
67. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
68. Zürcher, S., et al., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society, 2006. 128(4): p. 1064-1065.
69. Huang, C.-J., Advanced surface modification technologies for biosensors, in Chemical, gas, and biosensors for internet of things and related applications. 2019, Elsevier. p. 65-86.
70. Mariotti, M.P., et al., Hydrolysis of whey lactose by immobilized β-galactosidase. Brazilian Archives of Biology and Technology, 2008. 51: p. 1233-1240.
71. Merkel, R., et al., Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature, 1999. 397(6714): p. 50-53.
72. Timin, A.S., et al., Immobilization of bovine serum albumin onto porous poly (vinylpyrrolidone)-modified silicas. Industrial & Engineering Chemistry Research, 2014. 53(35): p. 13699-13710.
73. He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta biomaterialia, 2016. 40: p. 142-152.
74. Vu, C.-A., et al., Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study. Sensors and Actuators B: Chemical, 2021. 329: p. 129150.
75. Carrara, S., et al., New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosensors and Bioelectronics, 2009. 24(12): p. 3425-3429.
76. Sharma, S., K.C. Popat, and T.A. Desai, Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly (ethylene glycol) films. Langmuir, 2002. 18(23): p. 8728-8731.
77. Armbruster, D.A. and T. Pry, Limit of blank, limit of detection and limit of quantitation. The clinical biochemist reviews, 2008. 29(Suppl 1): p. S49.
78. Komarova, N., et al., Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines, 2022. 10(5): p. 1085.
79. 林弘庾, 探討檢測微核醣核酸時核酸雜交反應誘發之反離子重新分布對矽奈米線場效電晶體電場效應的影響, in 化學工程與材料工程學系. 2022, 國立中央大學: 桃園縣. p. 107.
80. Vu, C.-A., et al., Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids and Surfaces B: Biointerfaces, 2022. 209: p. 112142.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明