博碩士論文 110324091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.135.183.190
姓名 姜珮萱(Pei-Hsuan Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 分子量對嵌段共聚物與均聚物混摻薄膜之梯田表面中表面穿孔及水平圓柱結構的影響:臨場及不同入射角低掠角小角度X光散射研究
(Effects of Molecular Weight on Surface Perforations and Parallel Cylinders in Terraced Films of Block Copolymer Blends: In-Situ and Angle-Dependence GISAXS Studies.)
相關論文
★ 利用臨場及不同入射角低掠角小角度X光散射研究對稱型嵌段共聚物與均聚物混摻之表面浮凸薄膜的結構演變:均聚物分散係數之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 我們展示了對稱、弱分離的嵌段共聚物薄膜(聚苯乙烯 -b-甲基丙烯酸甲酯)
與低分子量和高分子量同聚物( PS2.8k和 PS17k)混合物的形態觀察和結構表徵。
這些混合物薄膜都支撐在矽基板上。 PS-b-PMMA/PS的混合物薄膜以 70/30和
50/50的重量比 製 備。在這兩個 比例下,薄膜形成了平行圓柱體結構。混合物薄
膜的初始厚度由聚合物濃度和旋轉速率控制。我們在兩個溫度下進行熱退火:
230和 270 oC。在這兩個目標溫度下,使用了兩個熱 歷 史: :(i) 1小時, ,(ii) 48小
時。熱退火從 310 oC 10分鐘)的旋轉狀態或熔融狀態開始。對混合物薄膜進
行了光學顯微鏡( OM)、掃描電子顯微鏡 SEM)和低入射角 X射線散射
GISAXS)的深入結構分析。無論熱 歷 史如何, PS-b-PMMA/PS2.8k混合物薄膜
都形成了孔洞和圓柱體的混合結構。這個結果表明結構處於平衡狀態。由於孔
洞和圓柱 體是水平排列的, PS-b-PMMA/PS2.8k薄膜的自由表面總是由一層薄的
孔洞層主導,該層位於平行圓柱體的頂部。通過角度依賴的 GISAXS進一步研
究了平行圓柱體的空間排列 發現了具有 C2mm對稱性的變形六角陣列。
摘要(英) We have demonstrated morphological observations and structural characterization for thin films of a symmetric, weakly segregated block copolymers—poly (styrene-b-methyl methacrylate) blended with low-molecular -weight and high-molecular-weight homopolymers (PS2.8k and PS17k), respectively. The blend films were all supported on silicon substrates. PS-b-PMMA/PS blends were prepared at weight fractions of 70/30 and 50/50. At the two ratios, the films form parallel cylinders. The initial thickness of blend films is controlled by polymer concentrations and spin rates. Two temperatures were used for thermal annealing: 230 and 270 oC Two thermal histories were used for thermal annealing at the two target temperatures: (i) 1 hour, (ii) 48 hours. The thermal annealing starts either from a spun state or a melt state at 310 oC (10 min). The in-depth structural analysis of the blended film was carried out by optical microscopy (OM), scanning electron microscopy (SEM), and low-grazing angle X-ray scattering (GISAXS). The PS-b-PMMA/PS2.8k blend films formed mixtures of perforations and cylinders regardless of the thermal histories. This result indicate that the structures are in an equilibrium state. Since the perforations and cylinders orient horizontally, the free surface of the PS-b-PMMA/PS2.8k films is always dominated by a thin layer of perforations, which sit on top of parallel cylinders. The spatial packing of parallel cylinders was further studied by angle-dependence GISAXS. Deformed hexagonal arrays with C2mm symmetry were found.
關鍵字(中) ★ 嵌段共聚物
★ 不同入射角低掠角小角度X光散射
★ 薄膜
★ 梯田表面
關鍵字(英) ★ Block Copolymer
★ Angle-Dependence GISAXS
★ Thin film
★ Terrace
論文目次 中文提要 ................................ ................................ ................................ ................................ ..... i
Abstract................................ ................................ ................................ ................................ ....... ii
目錄 ................................ ................................ ................................ ................................ ........... iv
圖目錄 ................................ ................................ ................................ ................................ ....... vi
表目錄 ................................ ................................ ................................ ................................ ...... xv
1 第一章、緒論 ................................ ................................ ................................ ........................ 1
1-1 嵌段共聚物之自組裝機制 ................................ ................................ ......................... 1
1-2 塊材系統之自組裝 ................................ ................................ ................................ ..... 2
1-3 薄膜系統之自組裝 ................................ ................................ ................................ ..... 4
1-3-1 表面場作用力對薄膜型態影響 ................................ ................................ ...... 5
1-3-2 膜厚相稱性與梯田結構 ................................ ................................ .................. 6
1-4 空間侷限效應 ................................ ................................ ................................ ............. 8
1-4-1 表面偏析 (Surface segregation) ................................ ................................ ....... 9
1-4-2 缺陷偏析 (Defect segregation) ................................ ................................ ....... 11
1-4-3 堆積挫折 (Packing frustration) ................................ ................................ ...... 12
1-5 混摻效應 ................................ ................................ ................................ ................... 14
1-6 分子量效應 ................................ ................................ ................................ ............... 17
1-7 研究動機 ................................ ................................ ................................ ................... 19
2 第二章、實驗 ................................ ................................ ................................ ...................... 21
2-1 實驗材料 ................................ ................................ ................................ ................... 21
2-1-1 高分子材料 ................................ ................................ ................................ .... 21
2-2 實驗儀器 ................................ ................................ ................................ ................... 22
2-3 實驗製備與設計 ................................ ................................ ................................ ....... 23
2-3-1 矽晶圓基材之前處理 ................................ ................................ .................... 23
2-3-2 高分子薄膜製備 ................................ ................................ ............................ 23
2-3-3 氧氣離子電漿蝕刻 —薄膜表面潤濕層之移除方法 ................................ .... 24
2-4 儀器原理 ................................ ................................ ................................ ................... 25
2-4-1 光學顯微鏡 (OM) ................................ ................................ .......................... 25
2-4-2 原子力顯微鏡 (AFM) ................................ ................................ .................... 26
2-4-3 掃描式電子顯微鏡 (SEM)................................ ................................ ............. 27
2-4-4 薄膜分析儀 (Filmetrics F20) ................................ ................................ ......... 29
2-4-5 低掠角小度 X光散射儀 (GISAXS)................................ .......................... 30
2-5 不同入射角之小度 X光散射 ................................ ................................ .............. 39
3 第三章、結果與討論 ................................ ................................ ................................ .......... 41
3-1 臨場實驗 (in situ)在不同厚度下結果 ................................ ................................ ...... 41
3-1-1 GISAXS 2-D圖之特徵介紹 ................................ ................................ .......... 43
3-1-2 初始厚度為 290 nm的臨場實驗 (in situ)結果 ................................ ............. 45
3-1-3 初始厚度為 90 nm的臨場實驗 (in situ)結果 ................................ ............... 50
3-2 水平圓柱之間距結構探討 ................................ ................................ ....................... 55
3-2-1 布拉格繞射之晶結構分析 ................................ ................................ ........ 56
3-2-2 分子量效應 ................................ ................................ ................................ .... 60
3-3 不同入射角之結構探討 (Angle-dependence) ................................ .......................... 64
3-3-1 薄膜表面型態 ................................ ................................ ................................ 64
3-3-2 不同組成之薄膜 ................................ ................................ ............................ 71
3-3-3 利用擬合數據討論分子量對不同組成之梯田結構的影響 ........................ 77
4 第四章、結論 ................................ ................................ ................................ ...................... 87
5 第五章、參考文獻 ................................ ................................ ................................ .............. 89
6 第六章、附錄 ................................ ................................ ................................ ...................... 95
參考文獻 [1] Nishimori, K.; Ouchi, M. AB-Alternating Copolymers via Chain-Growth Polymerization: Synthesis, Characterization, Self-Assembly, and Functions. Chem Commun (Camb), 2020, 56, 3473-3483.
[2] Bates, F. S.; Fredrickson, G. H. Block Copolymers-Designer Soft Materials. Physics Today, 2000, 52, 32−38.
[3] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem Soc Rev, 2012, 41, 5969-5985.
[4] Vukovic, I.; Brinke, G. t.; Loos, K. Block Copolymer Template-Directed Synthesis of Well-Ordered Metallic Nanostructures. Polymer, 2013, 54, 2591-2605.
[5] Willis, J. D.; Beardsley, T. M.; Matsen, M. W. Simple and Accurate Calibration of the Flory–Huggins Interaction Parameter. Macromolecules, 2020, 53, 9973-9982.
[6] Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers Towards Mesoporous Materials For Energy Storage and Conversion Systems. Chem Soc Rev, 2020, 49, 4681-4736.
[7] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Mortensen, K.; Polyisoprene—Poly Styrene Diblock Copolymer Phase Diagram. Macromolecules, 1995, 28, 8796-8806.
[8] Huang, C.; Zhu, Y.; Man, X.; Block Copolymer Thin Films. Physics Reports, 2021, 932, 1-36.
[9] Knoll, A.; Magerle, R.; Krausch, G. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Experiments. J Chem Phys, 2004, 120, 1105-1116.
[10]Geisinger, T.; Müller, M.; Binder, K. Symmetric Diblock Copolymers in Thin Films. Phase Stability in Self-Consistent Field Calculations and Monte Carlo Simulations. The Journal of Chemical Physics, 1999, 111, 5241-5250.
[11] Albert, J. N.; Epps III, T. H. Self-Assembly of Block Copolymer Thin Films. Materials Today, 2010, 13(6), 24-33.
[12] Horvat, A.; Lyakhova, K. S.; Sevink, G. J.; Zvelindovsky, A. V.; Magerle, R. Phase behavior in thin films of cylinder-forming. ABA block copolymers: mesoscale modeling. J Chem Phys, 2004, 120,1117-1126.
[13] Vu, T.; Mahadevapuram, N.; Perera, G. M.; Stein, G. E. Controlling Domain Orientations in Thin Films of AB and ABA Block Copolymers. Macromolecules, 2011, 44,6121-6127.
[14] Maher, M. J.; Self, J. L.; Stasiak, P.; Blachut, G.; Ellison, C. J.; Matsen, M. W.; Willson, C. G. Structure, Stability, and Reorganization of 0.5 L(0) Topography in Block Copolymer Thin Films. ACS Nano, 2016, 10,10152-10160.
[15] Huang, E.; Mansky, P.; Russell, T. P.; Harrison C.; Chaikin P. M.; Register R. A.; Hawker C. J.; Mays J. Mixed Lamellar Films:Evolution, Commensurability Effects, and Preferential Defect Formation. Macromolecules, 2000, 33, 80-88.
[16] Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Phys Rev Lett, 2002, 89, 035501.
[17] Mishra, V.; Hur, S.M.; Cochran, E. W.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J. Symmetry Transition in Thin Films of Diblock Copolymer/Homopolymer Blends. Macromolecules, 2010, 43, 1942-1949. [18] Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; De Pablo, J. J.; Nealey, P. F. Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science, 2005, 308, 1442-1446.
[19] Sohn, K. E.; Kojio, K.; Berry, B. C.; Karim, A.; Coffin, R. C.; Bazan, G. C.; Wang, J. Surface Effects on the Thin Film Morphology of Block Copolymers with Bulk Order−Order Transitions," Macromolecules, 2010, 43, 3406-3414.
[20] Armin Knoll, L. T.; Georg Krausch. Nanoscaling of Microdomain Spacings in Thin Films of Cylinder-Forming Block Copolymers. Nano Lett, 2007, 7(3) , 843-846.
[21] Choi, C.; Ahn, S.; Kim, J. K. Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) Polymers. Macromolecules, 2020, 53, 4577-4580.
[22] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules, 1990, 23(20), 4378-4386.
[23] Hong, J. W.; Chang, J. H.; Hung, H. H.; Liao, Y. P.; Jian, Y. Q.; Chang, I. C. Y.; Sun, Y. S. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-block-poly(methyl methacrylate). Macromolecules, 2022, 55, 2130-2147.
[24] Jeong, U.; Ryu, D. Y.; Kho, D. H.; Lee, D. H., Kim, J. K., Russell, T. P. Phase behavior of mixtures of block copolymer and homopolymers in thin films and bulk., Macromolecules, 2003,36(10),3626-3634.
[25] Toth, K.; Bae, S.; Osuji, C. O.; Yager, K. G.; Doerk, G. S. Film Thickness and Composition Effects in Symmetric Ternary Block Copolymer/Homopolymer Blend Films: Domain Spacing and Orientation. Macromolecules, 2021,54,7970-7986.
[26] Hong, J. W.; Chang, J. H.; Chang, I. C.; Sun, Y. S. Phase Behavior in Thin Films of Weakly Segregated Block Copolymer/Homopolymer Blends. Soft Matter, 2021, 17, 9189-9197.
[27] Ting, Y. H.; Liu, C. C.; Park, S. M.; Jiang, H.; Nealey, P. F.; Wendt, A. E. Surface Roughening of Polystyrene and Poly(methyl methacrylate)
in Ar/O2 Plasma Etching. Polymers, 2010, 2, 649-663.
[28] Bazaka, K.; Baranov, O.; Cvelbar, U.; Podgornik, B.; Wang, Y.; Huang, S.; Xu, S. Oxygen Plasmas: A Sharp Chisel and Handy Trowel for Nanofabrication. Nanoscale, 2018, 10(37), 17494-17511.
[29] Microscope Parts and Functions With Labeled Diagram and Functions,取自: https://www.microscopemaster.com/parts-of-a-compound-microscope.html.
[30] The principle of atomic force microscopy(AFM),取自: http://web1.knvs.tp.edu.tw/AFM/ch4.htm.
[31] Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A. A.; Nguyen, D. D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers, 2020, 12, 1142.
[32] Atomic force microscopy., Labeled Diagram, and Functions,取自: https://www.bio-equip.com/show1equip.asp?equipid=4245601.
[33] Zhu, F. Y.; Wang, Q. Q.; Zhang, X. S.; Hu, W.; Zhao, X.; Zhang, H. X. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology, 2014,25,185705.
[34] R. Hao, L. Zhu, Z. Li, F. Fang, and X. Zhang, "A Miniaturized and Fast System for Thin Film Thickness Measurement," Applied Sciences, vol. 2020,10,7284.
[35] 孫亞賢、劉峻佑、簡士偉, "低掠角小角度X 光散射原理及在高分子薄膜結構之應用," 科儀新知, 2013,34,61−70.
[36] 蘇群仁低掠小角/廣角度X光射線在異質接面高分子薄膜之應用, 化工, vol. 2017,64,28-36.
[37] 鄭有舜X-光小角度散射在軟物質上應用. 物理雙月刊, vol. 2004,26(2), 4.
[38] Liu, J.;Yager, K. G. Unwarping GISAXS data, IUCrJ, 2018, 5, 737-752.
[39] Ahn, J. H.; Zin, W. C. Structure of Shear-Induced Perforated Layer Phase in Styrene− Isoprene Diblock Copolymer Melts. Macromolecules, 2000, 33(2), 641-644.
[40] Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial Phase Transition of Polystyrene-B-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules, 2005, 38(25), 10532-10536.
[41] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. Macromolecules, 2005, 38(10), 4311-4323.
[42] Kao, J.; Bai, P.; Chuang, V. P.; Jiang, Z.; Ercius, P.; Xu, T. Nanoparticle Assemblies in Thin Films of Supramolecular Nanocomposites. Nano letters, 2012, 12(5), 2610-2618.
[43] Berezkin, A. V.; Jung, F.; Posselt, D.; Smilgies, D. M.; Papadakis, C. M. In Situ Tracking of Composition and Morphology of a Diblock Copolymer Film with GISAXS during Exchange of Solvent Vapors at Elevated Temperatures. Advanced Functional Materials, 2018, 28, 1706226.
[44] Marques, L.; Mezouar, M.; Hodeau, J. L.; Nunez-Regueiro, M.; Serebryanaya, N. R.; Ivdenko, V. A.; Dubitsky, G. A. "Debye-Scherrer Ellipses"from 3D Fullerene Polymers:An Anisotropic Pressure Memory Signature. Science, 1999, 283, 1720-1723.
[45] Saito, I.; Miyazaki, T.; Yamamoto, K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-ray Scattering Utilizing Low-Energy X-rays. Macromolecules, 2015, 48, 8190-8196.
[46] Junisu, B. A.; Chang, C. Y. I.; Sun, Y. S. Film Instability Induced by Swelling and Drying. Langmuir, 2022, 38(43), 13009-13020.
[47] Pandya, S.; Damodaran, A. R.; Xu, R.; Hsu, S. L.; Agar, J. C.; Martin, L. W. Strain-induced growth instability and nanoscale surface patterning in perovskite thin films. Scientific reports, 2016, 6, 26075.
[48] Panduro, E. A.; Granlund, H.; Sztucki, M.; Konovalov, O.; Breiby, D. W.; Gibaud, A. Using Three-Dimensional 3D Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) Analysis to Probe Pore Deformation in Mesoporous Silica Films. ACS Appl Mater Interfaces, 2014, 6, 2686-2691.
[49] Horvat, A.; Sevink, G. A.; Zvelindovsky, A. V.; Krekhov, A.; Tsarkova, L. Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolyers. ACS Nano, 2008, 2, 1143–1152.
指導教授 李岱洲 孫亞賢(Tai-Chou Lee Ya-Sen Sun) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明