博碩士論文 110326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.147.49.252
姓名 黃敏軒(Min-Hsuan Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
(Upcycling soybean pulp for sustainable protein biomanufacturing via a one-pot thermophilic protease cascade)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸
★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 胺基酸對於發酵製造蛋白質來說,在微生物培養基中是必不可少的成分,因為對宿主來說從頭合成胺基酸是高度耗能的。豆渣為大豆加工的低價值副產物,但豆渣含有豐富的不可溶性蛋白質,也難以被直接利用;因此,本研究將豆渣作為發酵製造蛋白質的永續胺基酸來源。傳統工業方法通常使用高溫酸性水解來水解蛋白質以獲取胺基酸:然而,其條件嚴苛且過程耗時。為了提高產量和產能,我們開發了一鍋式、兩種蛋白酶串聯的方法,能夠在3小時內完全將豆渣水解為寡肽和胺基酸。在實驗過程中我們觀察到嗜熱內肽酶 (Alcalase)和超嗜熱外肽酶 (TET aminopeptidase)之間的協同作用,使得這兩種蛋白酶串聯在60°C和pH 7.5的條件下能夠達到最佳效果,與傳統方法不同在於可從豆渣中回收大部分的胺基酸,並酵素水解能夠保留色胺酸和天門冬醯胺。並且,培養在豆渣酵素水解物中的E. coli和B. megaterium之綠色螢光蛋白產量與LB培養基中的產量相當。此外,我們還利用豆渣酵素水解物來發酵生產本研究所開發之蛋白酶,也因為Alcalase有著使細胞溶解之活性以至於能夠使用表達蛋白酶之細胞直接在60°C下進行豆渣蛋白水解,避免了昂貴且耗時的蛋白酶純化步驟。綜上所述,本研究提出了一個更新的循環生物經濟模型,將富含蛋白質而低價值的農業廢棄物轉化為永續的生物技術工業原料。
摘要(英) Amino acids are essential components of culture media for fermentative protein production as de novo amino acid synthesis is highly energy-consuming for the host. Soybean pulp (i.e., okara) is a low-value byproduct from soybean processing; however, okara is rich in insoluble proteins. Therefore, okara could be a sustainable source of amino acids for fermentative protein production. Conventional industrial methods for amino acid harvesting employ high-temperature acidic proteolysis to hydrolyze protein sources. However, these conditions are harsh and the process is time-consuming. To increase throughput and yield, we developed a one-pot, two-protease cascade capable of complete okara proteolysis into oligopeptides and individual amino acids in 3 hours. Interestingly, we observed an unprecedented synergy between the thermophilic endopeptidase (Alcalase) and hyperthermophilic exopeptidase (TET aminopeptidase), which allows the two-protease cascade to function optimally at 60°C and pH 7.5. Unlike the conventional method, the enzymatic process preserves tryptophan and asparagine, resulting in an almost complete recovery of total amino acid equivalent from okara. Furthermore, both E. coli and B. megaterium cultures cultivated in the enzymatic okara hydrolysates demonstrated comparable GFP yields compared to those cultivated in LB medium, respectively. We also used the enzymatic okara hydrolysates for fermentative production of the two proteases used in the enzymatic proteolysis. The cell-lytic activity of Alcalase even allows okara proteolysis directly using protease-expressing B. megaterium whole-cell biocatalyst, bypassing the costly protease purification step. In conclusion, this study represents a renovated circular bioeconomy model that converts abundant and low-value agro-waste into sustainable feedstocks of the biotechnological industry.
關鍵字(中) ★ 循環生物經濟
★ 發酵製造蛋白質
★ 一鍋式酶串聯
★ 嗜熱性蛋白酶
★ 農業廢棄物生物精煉
★ 資源回收
關鍵字(英) ★ Circular bioeconomy
★ Fermentative protein production
★ Thermophilic protease
★ One-pot enzyme cascade
★ Agro-waste biorefinery
★ Resource recovery
論文目次 摘要................................................................................................................................. i
Abstract .......................................................................................................................... ii
誌謝............................................................................................................................... iv
目錄................................................................................................................................ v
圖目錄.......................................................................................................................... vii
表目錄........................................................................................................................... ix
符號說明........................................................................................................................ x
第一章 前言............................................................................................................ 1
1.1 研究背景........................................................................................................ 1
1.2 研究動機與目的............................................................................................ 2
第二章 文獻回顧.................................................................................................... 3
2.1 聯合國永續發展目標 (SDGs) ..................................................................... 3
2.2 豆渣................................................................................................................ 3
2.3 蛋白質水解.................................................................................................... 6
2.4 巨大芽孢桿菌................................................................................................ 7
2.5 酵素................................................................................................................ 8
2.5.1 蛋白酶............................................................................................ 8
2.5.2 Alcalase ........................................................................................ 11
2.5.3 TET aminopeptidase .................................................................... 12
2.5.4 酵素動力學.................................................................................. 13
第三章 材料與方法.............................................................................................. 16
3.1 實驗架構...................................................................................................... 16
3.2 實驗材料與設備.......................................................................................... 17
3.2.1 實驗藥品...................................................................................... 17
3.2.2 實驗設備...................................................................................... 18
3.2.3 實驗菌種...................................................................................... 19
3.2.4 實驗酵素...................................................................................... 19
3.3 菌種保存及培養.......................................................................................... 20
3.3.1 菌種保存...................................................................................... 20
3.3.2 菌種培養...................................................................................... 20
3.4 分子生物操作.............................................................................................. 20
3.4.1 DNA操作 .................................................................................... 20
vi
3.4.2 分子克隆...................................................................................... 21
3.4.3 Bacillus megaterium YYBM1之轉形作用 ................................ 21
3.4.4 重組Bacillus megaterium YYBM1之菌株篩選 ....................... 22
3.5 異源蛋白表達與純化.................................................................................. 22
3.5.1 目標蛋白表達.............................................................................. 23
3.5.2 目標蛋白純化.............................................................................. 24
3.5.3 蛋白質之定性.............................................................................. 25
3.5.4 蛋白質之定量.............................................................................. 26
3.6 TET aminopeptidase酵素活性測試 ........................................................... 26
3.7 一鍋式雙蛋白酶水解分析.......................................................................... 27
3.7.1 一鍋式水解豆渣蛋白.................................................................. 27
3.7.2 Trp-auxotrophic E. coli JW1254測定豆渣水解物 ..................... 27
3.8 特性分析...................................................................................................... 28
3.8.1 定量總胺基酸.............................................................................. 28
3.8.2 高效液相層析.............................................................................. 29
第四章 結果與討論.............................................................................................. 30
4.1 重組質體之轉形.......................................................................................... 30
4.2 異源蛋白表達和表徵.................................................................................. 32
4.3 內肽酶和外肽酶的協同作用...................................................................... 36
4.4 一鍋式雙蛋白酶串聯反應進行豆渣蛋白水解.......................................... 41
4.5 用於永續生物製造蛋白質之豆渣加值循環模組...................................... 47
第五章 結論與建議.............................................................................................. 52
5.1 結論.............................................................................................................. 52
5.2 建議.............................................................................................................. 53
參考文獻...................................................................................................................... 54
附錄A .......................................................................................................................... 61
附錄B .......................................................................................................................... 63
參考文獻 Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme and microbial technology, 19(3), 202-207.
Ando, S., Ishikawa, K., Ishida, H., Kawarabayasi, Y., Kikuchi, H., & Kosugi, Y. (1999). Thermostable aminopeptidase from Pyrococcus horikoshii. FEBS letters, 447(1), 25-28.
Appolaire, A., Durá, M. A., Ferruit, M., Andrieu, J. P., Godfroy, A., Gribaldo, S., & Franzetti, B. (2014). The TET2 and TET3 aminopeptidases from P yrococcus horikoshii form a hetero‐subunit peptidasome with enhanced peptide destruction properties. Molecular Microbiology, 94(4), 803-814.
Appolaire, A., Rosenbaum, E., Durá, M. A., Colombo, M., Marty, V., Savoye, M. N., Godfroy, A., Schoehn, G., Girard, E., & Gabel, F. (2013). Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. Journal of Biological Chemistry, 288(31), 22542-22554.
Ariaeenejad, S., Kavousi, K., Mamaghani, A. S. A., Ghasemitabesh, R., & Salekdeh, G. H. (2022). Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. Science of the Total Environment, 815, 152796.
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology, 2(1), 2006.0008.
Bachosz, K., Zdarta, J., Bilal, M., Meyer, A. S., & Jesionowski, T. (2023). Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. Science of the Total Environment, 161630.
Baldi, G., Soglia, F., & Petracci, M. (2021). Valorization of meat by-products. In Food waste recovery (pp. 419-443). Elsevier.
Bhaskar, N., Modi, V. K., Govindaraju, K., Radha, C., & Lalitha, R. G. (2007). Utilization of meat industry by products: protein hydrolysate from sheep visceral mass. Bioresource technology, 98(2), 388-394.
Chabeaud, A., Dutournié, P., Guérard, F., Vandanjon, L., & Bourseau, P. (2009). Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate. Marine Biotechnology, 11, 445-455.
Chen, Y., Zhang, R., Zhang, W., & Xu, Y. (2022). Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes
55
soy protein to small peptides and free amino acids. LWT, 165, 113642.
Clare, D., & Swaisgood, H. (2000). Bioactive milk peptides: a prospectus. Journal of dairy science, 83(6), 1187-1195.
Claver, I. P., & Zhou, H. (2005). Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. Journal of food biochemistry, 29(1), 13-26.
De Benedetti, S., Girlando, V., Pasquali, M., & Scarafoni, A. (2021). Valorization of Okara by Enzymatic Production of Anti-Fungal Compounds for Plant Protection. Molecules, 26(16), 4858.
DeLange, R. J., & Smith, E. L. (1968). Subtilisin carlsberg: I. Amino acid composition; isolation and composition of peptides from the tryptic hydrolysate. Journal of Biological Chemistry, 243(9), 2134-2142.
Durá, M. A., Receveur-Brechot, V., Andrieu, J.-P., Ebel, C., Schoehn, G., Roussel, A., & Franzetti, B. (2005). Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry, 44(9), 3477-3486.
Durá, M. A., Rosenbaum, E., Larabi, A., Gabel, F., Vellieux, F. M., & Franzetti, B. (2009). The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Molecular Microbiology, 72(1), 26-40.
Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113, 108324.
Feng, J.-Y., Wang, R., Thakur, K., Ni, Z.-J., Zhu, Y.-Y., Hu, F., Zhang, J.-G., & Wei, Z.-J. (2021). Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends in Food Science & Technology, 116, 669-680.
Fountoulakis, M., & Lahm, H.-W. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of chromatography A, 826(2), 109-134.
Frank, M. P., & Powers, R. W. (2007). Simple and rapid quantitative high-performance liquid chromatographic analysis of plasma amino acids. Journal of chromatography B, 852(1-2), 646-649.
Franzetti, B., Schoehn, G., Hernandez, J.-F., Jaquinod, M., Ruigrok, R., & Zaccai, G. (2002). Tetrahedral aminopeptidase: a novel large protease complex from archaea. The EMBO journal, 21(9), 2132-2138.
Gao, M.-T., Hirata, M., Toorisaka, E., & Hano, T. (2006). Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresource technology, 97(18), 2414-
56
2420.
Gicana, R. G., Yeh, F.-I., Hsiao, T.-H., Chiang, Y.-R., Yan, J.-S., & Wang, P.-H. (2022). Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model. Journal of the Taiwan Institute of Chemical Engineers, 135, 104358.
Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: properties and functions. FEMS microbiology reviews, 18(4), 319-344.
Guido, Y. d. A. S., Fonseca, G., de Farias Soares, A., da Silva, E. C. N., Ostanik, P. A. G., & Perobelli, J. E. (2020). Food-triad: An index for sustainable consumption. Science of the Total Environment, 740, 140027.
Guo, L., Lu, L., Yin, M., Yang, R., Zhang, Z., & Zhao, W. (2020). Valorization of refractory keratinous waste using a new and sustainable bio-catalysis. Chemical Engineering Journal, 397, 125420.
Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology, 59, 15-32.
Hu, Y., Piao, C., Chen, Y., Zhou, Y., Wang, D., Yu, H., & Xu, B. (2019). Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Bioscience, 31, 100439.
Huang, E., Yan, J.-S., Gicana, R. G., Chiang, Y.-R., Yeh, F.-I., Huang, C.-C., & Wang, P.-H. (2023). Valorization of soybean pulp for sustainable α-ketoisocaproate production using engineered Bacillus subtilis whole-cell biocatalyst. Chemosphere, 322, 138200.
Kamble, D. B., & Rani, S. (2020). Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): A review. Legume Science, 2(1), e32.
Korneli, C., David, F., Biedendieck, R., Jahn, D., & Wittmann, C. (2013). Getting the big beast to work—systems biotechnology of Bacillus megaterium for novel high-value proteins. Journal of biotechnology, 163(2), 87-96.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Lai, Y., Li, W., Wu, X., & Wang, L. (2021). A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study. Applied microbiology and biotechnology, 105, 707-723.
Lee, J.-Y., Lee, H. D., & Lee, C.-H. (2001). Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour. Food Research International, 34(2-3), 217-222.
57
Lei, F., Zhao, Q., Lin, L., Sun, B., & Zhao, M. (2017). Evaluation of the hydrolysis specificity of an aminopeptidase from Bacillus licheniformis SWJS33 using synthetic peptides and soybean protein isolate. Journal of agricultural and food chemistry, 65(1), 167-173.
Lei, F., Zhao, Q., Sun-Waterhouse, D., & Zhao, M. (2017). Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food chemistry, 214, 347-353.
Li, B., Qiao, M., & Lu, F. (2012). Composition, nutrition, and utilization of okara (soybean residue). Food Reviews International, 28(3), 231-252.
Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48-56.
Li, H., Long, D., Peng, J., Ming, J., & Zhao, G. (2012). A novel in-situ enhanced blasting extrusion technique—Extrudate analysis and optimization of processing conditions with okara. Innovative Food Science & Emerging Technologies, 16, 80-88.
Lin, F., Chhapekar, S. S., Vieira, C. C., Da Silva, M. P., Rojas, A., Lee, D., Liu, N., Pardo, E. M., Lee, Y.-C., & Dong, Z. (2022). Breeding for disease resistance in soybean: a global perspective. Theoretical and Applied Genetics, 1-100.
Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, 2(2), 126-132.
Luján, R., & Ciruela, F. (2021). Receptor and Ion Channel Detection in the Brain. Springer.
Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M.-J., Zapata-Revilla, M.-A., & Tenorio-Sanz, M.-D. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Science and Technology, 43(9), 1467-1470.
Montilha, M., Sbroggio, M., Figueiredo, V., Ida, E., & Kurozawa, L. (2017). Optimization of enzymatic protein hydrolysis conditions of okara with endopeptidase Alcalase. International Food Research Journal, 24(3), 1067.
Nandan, A., & Nampoothiri, K. M. (2020). Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied microbiology and biotechnology, 104, 5243-5257.
Nielsen, P., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5), 642-646.
O′Toole, D. K. (1999). Characteristics and use of okara, the soybean residue from soy milk production a review. Journal of agricultural and food chemistry, 47(2),
58
363-371.
Orts, A., Revilla, E., Rodriguez-Morgado, B., Castaño, A., Tejada, M., Parrado, J., & García-Quintanilla, A. (2019). Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon, 5(6), e01958.
Pang, B., Sun, Z., Wang, L., Chen, W.-J., Sun, Q., Cao, X.-F., Shen, X.-J., Xiao, L., Yan, J.-L., & Deuss, P. J. (2021). Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chemical Engineering Journal, 419, 129565.
Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32.
Patel, A. K., Singhania, R. R., & Pandey, A. (2016). Novel enzymatic processes applied to the food industry. Current Opinion in Food Science, 7, 64-72.
Peydayesh, M., Bagnani, M., Soon, W. L., & Mezzenga, R. (2022). Turning food protein waste into Sustainable Technologies. Chemical Reviews.
Phadtare, S., Rao, M., & Deshpande, V. (1996). A serine alkaline protease from the fungus Conidiobolus coronatus with a distinctly different structure than the serine protease subtilisin Carlsberg. Archives of microbiology, 166, 414-417.
Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104.
Provansal, M. M., Cuq, J. L., & Cheftel, J. C. (1975). Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid crosslinks and isomerization of lysine residues. Journal of agricultural and food chemistry, 23(5), 938-943.
Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews, 62(3), 597-635.
Rawlings, N. D. (2016). Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie, 122, 5-30.
Rovera, C., Fiori, F., Trabattoni, S., Romano, D., & Farris, S. (2020). Enzymatic hydrolysis of bacterial cellulose for the production of nanocrystals for the food packaging industry. Nanomaterials, 10(4), 735.
Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R. T., Romano, D., & Farris, S. (2018). Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustainable Chemistry & Engineering, 6(6), 7725-7734.
59
Russell, D. W., & Sambrook, J. (2001). Molecular cloning: a laboratory manual (Vol. 1). Cold Spring Harbor Laboratory Cold Spring Harbor, NY.
Rygus, T., & Hillen, W. (1991). Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Applied microbiology and biotechnology, 35, 594-599.
Sigma-Aldrich.
Sim, S. Y. J., Srv, A., Chiang, J. H., & Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods, 10(8), 1967.
Song, Y., Lee, B.-R., Cho, S., Cho, Y.-B., Kim, S.-W., Kang, T. J., Kim, S. C., & Cho, B.-K. (2015). Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing. FEMS Microbiology Letters, 362(11), fnv073.
Souza, T. S. P. d., de Andrade, C. J., Koblitz, M. G. B., & Fai, A. E. C. (2023). Microbial peptidase in food processing: Current state of the art and future trends. Catalysis Letters, 153(1), 114-137.
Stammen, S., Müller, B. K., Korneli, C., Biedendieck, R., Gamer, M., Franco-Lara, E., & Jahn, D. (2010). High-yield intra-and extracellular protein production using Bacillus megaterium. Applied and Environmental Microbiology, 76(12), 4037-4046.
Stammen, S., Schuller, F., Dietrich, S., Gamer, M., Biedendieck, R., & Jahn, D. (2010). Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium. Applied microbiology and biotechnology, 88, 529-539.
Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E.-H., Tavano, O., Berenguer-Murcia, A., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International journal of biological macromolecules, 165, 2143-2196.
Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11.
Tsai, W.-T., & Kuo, K.-C. (2010). An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy, 35(12), 4824-4830.
TSUGITA, A., & SCHEFFLER, J. J. (1982). A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. European journal of biochemistry, 124(3), 585-588.
Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology, 108, 27-39.
UN. (2015). Sustainable Development Goals.
Vary, P. S. (1994). Prime time for Bacillus megaterium. Microbiology, 140(5), 1001-
60
1013.
Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). Bacillus megaterium—from simple soil bacterium to industrial protein production host. Applied microbiology and biotechnology, 76, 957-967.
Xiong, X., Iris, K., Tsang, D. C., Bolan, N. S., Ok, Y. S., Igalavithana, A. D., Kirkham, M., Kim, K.-H., & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375, 121983.
Yang, Y., Biedendieck, R., Wang, W., Gamer, M., Malten, M., Jahn, D., & Deckwer, W.-D. (2006). High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microbial Cell Factories, 5, 1-14.
Yang, Y., Malten, M., Biedendieck, R., Wang, W., Jahn, D., & Deckwer, W.-D. (2006). Bacillus megaterium as a recombinant protein production host. Microbial Cell Factories, 5, 1-2.
Zajki-Zechmeister, K., Eibinger, M., & Nidetzky, B. (2022). Enzyme Synergy in Transient Clusters of Endo-and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose. ACS catalysis, 12(17), 10984-10994.
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構.
指導教授 王柏翔(Po-Hsiang Wang) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明