博碩士論文 110326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.226.98.89
姓名 張晉榮(Chin-Jung Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極透過伏安分析法來進行COD測定分析真實水樣
(Determination of chemical oxygen demand in real water through voltammetric analysis by titanium dioxide/single-walled carbon nanotubes/glassy carbon Eelectrode)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-25以後開放)
摘要(中) 化學需氧量(chemical oxygen demand ,COD)是水質評估的重要分析參數之一。 傳統 COD 標準方法分析時間長、氧化能力有限、且會用到有毒的試劑會對環境 造成二次污染等缺點。而電化學方法不僅具有分析快速、靈敏度高、環境友好等 優點,而且可應用於現場監測分析,具有良好應用前景。 本研究採用溶膠凝膠法製備了 TiO2/ SWCNT(titanium dioxide/single-walled carbon nanotubes)複合材料,並將其應用於玻璃碳電極(glassy carbon electrode, GCE)上。通過線性掃描伏安法(linear sweep voltammetry ,LSV)對模擬水樣和真實 水樣進行 COD 分析。為了評估該修飾電極的有效性,透過在水中混合幾種具有 代表性的有機化合物來製備模擬水樣。這些有機化合物分為三類。第一種是常用 於 COD 分析的標準樣品第二種是工業廢水中常見的污染物及環境中之自然水體 中常見的天然有機物。單一化合物的模擬水樣中獲得的峰值電流與理論需氧量 (theoretical oxygen demand ,ThOD)呈正相關,並且針對常見的 COD 干擾物進行討 論,發現過高濃度的鐵離子以及亞硝酸鹽氮會對電極在測定上造成干擾。最後對 實際水樣進行分析研究,實際水樣分別選用學校內的中大湖、百花川、北區生活 污水及工業區污水進行電化學分析。為了獲得不同的 COD 值將真實水樣稀釋成 不同濃度,部分水體中稀釋後的峰值電流會與 COD 呈負相關,為進一步確認原 因分析了相同基質下的真實水樣,在此操作條下峰值電流則與 COD 呈正相關, ii 這可能是因為水體中的某種物質遮蔽了電極訊號導致水樣稀釋後的峰值電流反 而會上升。 在相同的基質下即使為不同天不同電極測定的水樣,透過 ECSA 計算可以減 少因為電極活性不同所造成的誤差,結果表示用 LSV 建立的擬合方程對較穩定 的水樣進行 COD 的測定是可行的,TiO2/SWCNT/GCE 在三個月中測定不同真實 水樣後,其峰值電流平均為 300μA,RSD 為 6.29%證實 TiO2/SWCNT/GCE 電極 具有良好的長效性。
摘要(英) Chemical oxygen demand (COD) is one of the crucial parameters for water quality assessment. Traditional COD standard methods have disadvantages such as lengthy analysis time, limited oxidation capability, and the use of toxic chemicals leading to secondary pollution. Electrochemical methods offer advantages such as rapid analysis, high sensitivity, and environmental friendliness. Moreover, they can be applied for onsite monitoring, showing promising applications. In this study, a sol-gel method was employed to prepare TiO2/SWCNT composite material, which was applied onto a glassy carbon electrode (GCE). COD analysis of single-compound synthetic water and real water samples was conducted using linear sweep voltammetry (LSV). To evaluate the effectiveness of the modified electrode, simulated water samples were prepared by mixing several representative organic compounds, categorized into three types. The first type comprised standard samples commonly used in COD analysis, the second type included pollutants found in industrial wastewater, and the third type consisted of naturally occurring organic substances in environmental water bodies. The peak currents obtained from single-compound simulated samples were positively correlated with Theoretical oxygen demand (ThOD), and discussion on common COD interferents revealed interference from high concentrations of iron ions and nitrate nitrogen. iv Finally, real water samples from different sources, including Zhongda Lake, Baihua River, North District domestic sewage, and industrial zone wastewater, were analyzed using electrochemical methods. Dilution of real water samples to obtain different COD concentrations showed a negative correlation between peak currents and COD in some water bodies. Further analysis of real water samples with the same matrix under similar conditions demonstrated a positive correlation between peak currents and COD, possibly due to a substance in the water masking the electrode signal, causing an increase in peak currents after dilution. ECSA calculations for samples with the same matrix and different electrodes, even on different days, helped reduce errors arising from varying electrode activity. The results indicated that establishing a fitting equation using LSV for stable water samples is feasible. After three months of analyzing different real water samples, the average peak current for TiO2/SWCNT/GCE was 300 μA with an RSD of 6.29%, confirming the electrode′s excellent long-term stability.
關鍵字(中) ★ 化學需氧量
★ 線性掃描伏安法
★ 二氧化鈦
★ 單壁奈米碳管
關鍵字(英) ★ chemical oxygen demand
★ linear sweep voltammetry
★ single-walled carbon nanotube
★ titanium dioxide
論文目次 目錄 摘要.................................................................................................................................. i Abstract..........................................................................................................................iii 目錄................................................................................................................................ vi 表目錄..........................................................................................................................viii 圖目錄............................................................................................................................ ix 第一章 前言................................................................................................................... 1 1.1 研究緣起.......................................................................................................... 1 1.2 研究目的.......................................................................................................... 2 1.3 研究流程.......................................................................................................... 3 第二章 文獻回顧........................................................................................................... 4 2.1 伏安法分析原理 ............................................................................................. 4 電化學反應系統 .................................................................................. 4 線性掃描伏安法(linear sweep voltammetry, LSV)............................. 6 循環伏安法(cyclic voltammetrv, CV) ................................................. 7 2.2 電極材料.......................................................................................................... 9 二氧化鈦............................................................................................... 9 奈米碳管............................................................................................. 10 2.3 伏安法定量分析及應用 ............................................................................... 12 伏安法定量有機物 ............................................................................ 12 伏安法定量無機物 ............................................................................ 13 2.4 COD 快速分析............................................................................................... 14 傳統 COD 標準方法問題.................................................................. 15 光電催化檢測 COD........................................................................... 16 vii 電化學檢測 COD............................................................................... 18 第三章 研究方法......................................................................................................... 21 3.1 實驗設備........................................................................................................ 21 3.2 製作複合修飾電極(TiO2/SWCNT/GCE)..................................................... 22 TiO2/SWCNT 複合材料的合成.......................................................... 23 製備 TiO2/SWCNT/GCE 電極........................................................... 24 3.3 電化學分析.................................................................................................... 25 電極校正............................................................................................. 25 3.4 模擬、真實水樣測定 .................................................................................... 26 第四章 結果與討論..................................................................................................... 31 4.1 TiO2/SWCNT/GCE 電極對 COD 模擬溶液之 LSV 分析 ........................... 31 4.2 COD 傳統標準方法干擾物質分析............................................................... 46 4.3 實際水樣分析 ............................................................................................... 54 中大湖................................................................................................. 55 百花川................................................................................................. 57 平鎮工業區 ........................................................................................ 59 北區模廠............................................................................................. 66 4.4 基質的影響.................................................................................................... 72 4.5 電極長效性及穩定性 ................................................................................... 78 第五章 結論與建議..................................................................................................... 80 5.1 結論................................................................................................................ 80 5.2 建議................................................................................................................ 81 參考文獻....................................................................................................................... 82 附錄............................................................................................................................... 87
參考文獻 參考文獻
Alizadeh, T., & Amjadi, S. (2020). Determination of nicotinic acid by square wave
voltammetry on a carbon paste electrode: the crucial effect of electrode composition
and analytical conditions. Analytical and bioanalytical electrochemistry, 12(2), 250-
262.
Baker, J. R., Milke, M. W., & Mihelcic, J. R. (1999). Relationship between chemical
and theoretical oxygen demand for specific classes of organic chemicals. Water
research, 33(2), 327-334.
Bridgeman, J., Baker, A., Carliell-Marquet, C., & Carstea, E. (2013). Determination of
changes in wastewater quality through a treatment works using fluorescence
spectroscopy. Environmental technology, 34(23), 3069-3077.
Bourgeois, W., Burgess, J. E., & Stuetz, R. M. (2001). On‐line monitoring of wastewater
quality: a review. In: wiley online library.
Carchi, T., Lapo, B., Alvarado, J., Espinoza-Montero, P. J., Llorca, J., & Fernández, L.
(2019). A nafion film cover to enhance the analytical performance of the CuO/Cu
electrochemical sensor for determination of chemical oxygen demand. Sensors,
19(3), 669.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium
dioxide. Progress in solid state chemistry, 32(1-2), 33-177.
Chanudet, V., Filella, M., & Quentel, F. (2006). Application of a simple voltammetric
method to the determination of refractory organic substances in freshwaters.
Analytica Chimica Acta, 569(1-2), 244-249.
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., ... & Cai, W. (2012). Assessment
of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube
array sensor. Analytical methods, 4(6), 1790-1796.
Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption
of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and
thermodynamics study. Scientific african, 5, e00116.
Deshmukh, M. A., Celiesiute, R., Ramanaviciene, A., Shirsat, M. D., & Ramanavicius,
A. (2018). EDTA_PANI/SWCNTs nanocomposite modified electrode for
electrochemical determination of copper (II), lead (II) and mercury (II) ions.
electrochimica acta, 259, 930-938.
83
Elfeky, E. M., Shehata, M. R., Elbashar, Y. H., Barakat, M. H., & El Rouby, W. M.
(2022). Developing the sensing features of copper electrodes as an environmental
friendly detection tool for chemical oxygen demand. RSC advances, 12(7), 4199-
4208.
Elugoke, S. E., Fayemi, O. E., Adekunle, A. S., Sherif, E.-S. M., & Ebenso, E. E. (2022).
Electrochemical sensor for the detection of adrenaline at poly (crystal violet)
modified electrode: optimization and voltammetric studies. Heliyon, 8(10).
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015).
Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments.
Journal of photochemistry and photobiology C: photochemistry reviews, 25, 1-29.
Ettinger, M., Lishka, R., & Kroner, R. (1954). Persistence of pyridine bases in polluted
water. Industrial & engineering chemistry, 46(4), 791-793.
Fan, Y., Liu, J.-H., Lu, H.-T., & Zhang, Q. (2011). Electrochemical behavior and
voltammetric determination of paracetamol on nafion/TiO2–graphene modified
glassy carbon electrode. Colloids and surfaces B: Biointerfaces, 85(2), 289-292.
Forster, R. J., Walsh, D., Adamson, K., & Spain, E. (2019). Voltammetry| overview.
Geerdink, R. B., van den Hurk, R. S., & Epema, O. J. (2017). Chemical oxygen demand:
Historical perspectives and future challenges. Analytica chimica acta, 961, 1-11.
Guo, X., Yun, Y., Shanov, V. N., Halsall, H. B., & Heineman, W. R. (2011).
Determination of trace metals by anodic stripping voltammetry using a carbon
nanotube tower electrode. Electroanalysis, 23(5), 1252-1259.
Hassan, H. H., Badr, I. H., Abdel-Fatah, H. T., Elfeky, E. M., & Abdel-Aziz, A. M.
(2018). Low cost chemical oxygen demand sensor based on electrodeposited nanocopper film. Arabian journal of chemistry, 11(2), 171-180.
Hou, P.-X., Liu, C., & Cheng, H.-M. (2008). Purification of carbon nanotubes. carbon,
46(15), 2003-2025.
Issa, M., Muddemann, T., Haupt, D., Kunz, U., & Sievers, M. (2021). Simple catalytic
approach for removal of analytical interferences caused by hydrogen peroxide in a
standard chemical oxygen demand test. Journal of environmental engineering,
147(12), 04021059.
Jing, T., Zhou, Y., Hao, Q., Zhou, Y., & Mei, S. (2012). A nano-nickel electrochemical
sensor for sensitive determination of chemical oxygen demand. Analytical methods,
4(4), 1155-1159.
84
Kim, Y. C., Lee, K. H., Sasaki, S., Hashimoto, K., Ikebukuro, K., & Karube, I. (2000).
Photocatalytic sensor for chemical oxygen demand determination based on oxygen
electrode. Analytical chemistry, 72(14), 3379-3382.
Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of chemical
education, 60(9), 702.
Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of crystal violet
dye from aqueous solution using water hyacinth: Equilibrium, kinetics and
thermodynamics study. Resource-efficient technologies, 3(1), 71-77.
Kumaravel, A., & Chandrasekaran, M. (2011). A biocompatible nano TiO2/nafion
composite modified glassy carbon electrode for the detection of fenitrothion. Journal
of Electroanalytical Chemistry, 650(2), 163-170.
Lan, Q., Li, Q., Zhang, X., & Chen, Z. (2018). A novel electrochemiluminescence
system of CuS film and K2S2O8 for determination of crystal violet. Journal of
electroanalytical chemistry, 810, 216-221.
Li, D. (2013). TiO₂ photocatalytic degradation of waste activated sludge and potassium
hydrogen phthalate in wastewater for enhancing biogas production.
Li, G., Xia, Y., Tian, Y., Wu, Y., Liu, J., He, Q., & Chen, D. (2019). Recent developments
on graphene-based electrochemical sensors toward nitrite. Journal of the
electrochemical society, 166(12), B881.
Liu, Z., & Smith, S. R. (2021). Enzyme recovery from biological wastewater treatment.
Waste and biomass valorization, 12, 4185-4211.
Mahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent developments in
environmental photocatalytic degradation of organic pollutants: the case of titanium
dioxide nanoparticles—a review. Journal of nanomaterials, 2015, 5-5.
Moura, M. N., Martín, M. J., & Burguillo, F. J. (2007). A comparative study of the
adsorption of humic acid, fulvic acid and phenol onto bacillus subtilis and activated
sludge. Journal of hazardous materials, 149(1), 42-48.
Nasikhudin, Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on
photocatalytic properties of TiO2 nanoparticle in various pH condition. Journal of
physics: Conference series,
Pang, Y., Xu, G., Feng, Q., Liu, J., Lv, J., Zhang, Y., & Wu, Y. (2017). Synthesis of αBi2Mo3O12/TiO2 nanotube arrays for photoelectrochemical COD detection
application. Langmuir, 33(36), 8933-8942.
85
Park, J., & Eun, C. (2016). Electrochemical behavior and determination of salicylic acid
at carbon-fiber electrodes. Electrochimica acta, 194, 346-356.
Payra, S., Challagulla, S., Chakraborty, C., & Roy, S. (2019). A hydrogen evolution
reaction induced unprecedentedly rapid electrocatalytic reduction of 4-nitrophenol
over ZIF-67 compare to ZIF-8. Journal of electroanalytical chemistry, 853, 113545.
Ranjit, K., Willner, I., Bossmann, S., & Braun, A. (2001). Lanthanide oxide-doped
titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation
of p-chlorophenoxyacetic acid. Environmental science & technology, 35(7), 1544-
1549.
Rashed, M. A., Faisal, M., Harraz, F. A., Jalalah, M., Alsaiari, M., & Al-Assiri, M.
(2020). rGO/ZnO/nafion nanocomposite as highly sensitive and selective
amperometric sensor for detecting nitrite ions (NO2

). Journal of the Taiwan institute
of chemical engineers, 112, 345-356.
Raskin, I. (1992). Role of salicylic acid in plants. Annual review of plant biology, 43(1),
439-463.
Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A review on carbon nanotube:
An overview of synthesis, properties, functionalization, characterization, and the
application. Materials science and engineering: B, 268, 115095.
Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor
applications. In electrochemical biosensors (pp. 11-43). Elsevier.
Rodriguez-Amaro, R., Pérez, R., Lopez, V., & Ruiz, J. (1990). Study of the
electrochemical reduction of nicotinic acid at a mercury electrode. Journal of
electroanalytical chemistry and interfacial electrochemistry, 278(1-2), 307-322.
Savan, E. K. (2019). Electrochemical determination of N-acetyl cysteine in the presence
of acetaminophen at multi-walled carbon nanotubes and nafion modified sensor.
Sensors and actuators B: Chemical, 282, 500-506.
Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B.
(2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous
solutions using nanomaterials: a review. Science of the total environment, 468, 1014-
1027.
Teixeira, M. d. C., Felix, F. S., Thomasi, S. S., Magriotis, Z. M., da Silva, J. M., Okumura,
L. L., & Saczk, A. A. (2019). Voltammetric determination of organic nitrogen
compounds in environmental samples using carbon paste electrode modified with
86
activated carbon. Microchemical journal, 148, 66-72.
Wang, L., Zhang, Y., Sun, X., Li, Y., Zhai, J., & Dong, S. (2023). A new FTO/TiO2/PbO2
electrode for eco-friendly electrochemical determination of chemical oxygen
demand. Nano Research, 1-6.
Wang, M., Liu, Y., Yang, L., Tian, K., He, L., Zhang, Z., Jia, Q., Song, Y., & Fang, S.
(2019). Bimetallic metal–organic framework derived FeOx/TiO2 embedded in
mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-
nitrophenol. Sensors and actuators B: Chemical, 281, 1063-1072.
Wang, X., Wu, D., Yuan, D., & Wu, X. (2022). A nano-lead dioxide-composite
electrochemical sensor for the determination of chemical oxygen demand. Journal of
environmental chemical engineering, 10(3), 107464.
Wu, J., Liu, H., & Lin, Z. (2008). Electrochemical performance of a carbon
nanotube/La-doped TiO2 nanocomposite and its use for preparation of an
electrochemical nicotinic acid sensor. Sensors, 8(11), 7085-7096.
Yagati, A. K., Pyun, J.-C., Min, J., & Cho, S. (2016). Label-free and direct detection of
C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric
sensor. Bioelectrochemistry, 107, 37-44.
Yao, L., Tang, Y., & Huang, Z. (2007). Nicotinic acid voltammetric sensor based on
molecularly imprinted polymer membrane‐modified electrode. Analytical letters,
40(4), 677-688.
Yu, H., Wang, H., Quan, X., Chen, S., & Zhang, Y. (2007). Amperometric determination
of chemical oxygen demand using boron-doped diamond (BDD) sensor.
Electrochemistry Communications, 9(9), 2280-2285.
胡啟章,「電化學原理與方法」,五南圖書出版社,2011。
陳凱欣,「以溶膠凝膠法製備 MWCNTs/TiO2 及其光催化特性」,碩士論文,
國立中央大學環境工程研究所,中壢,2013。
盧怡君,「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行
COD 之伏安法分析」, 碩士論文,國立中央大學環境工程研究所,中壢,2015
陳伊伶,「以二氧化鈦/單壁奈米碳管/玻璃碳電極進行多成份水樣之 COD 快速分
析」,碩士論文,國立中央大學環境工程研究所,中壢,2021
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明