博碩士論文 110326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:13.59.180.145
姓名 林依萱(Yi-Hsuan Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
(Cell-free enzymatic synthesis of insoluble and homogeneous long‐chain polyphosphate from microalgal biomass)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸
★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 磷是生命中必要的元素,然而磷礦(Phosphate rock, PR)卻是一種有限且不可再生的重要礦產資源。隨著科技日益進步與人口逐年增長,磷資源的開採與應用也隨之增加,過去數據統計約80%的磷礦資源被運用於肥料與清潔劑上。然而,過量的磷排放至環境水體中容易導致水體優養化。因此,本研究首先利用微藻從豬場廢水中回收磷,然後使用磷酸轉移酶級聯生成不溶性和均質的長鏈聚磷酸鹽(polyphosphate, polyP)。polyP功能因鏈長而異,短鏈polyP(10–100-mer)可促進傷口癒合並促進骨再生;中鏈polyP(100–300-mer)具有抗菌特性(例如:M. tuberculosis)及抗病毒作用(例如:Covid);另一方面,長鏈polyP(300–1,300-mer)可用於製造人工骨縫線,促進骨礦化,polyP具有生物醫學材料之高經濟價值。我們成功地從微藻中萃取了不同長度的polyP,然後將萃取的polyP分別通過聚磷酸激酶和肌酸激酶轉化為不溶性和均質的長鏈polyP。由此產生的不溶性polyP顆粒可以藉由過濾純化。最後,透過95℃非生物水解方式縮短長鏈polyP,以達到控制生成特定長度polyP之目的。本研究成功以酵素法萃煉微藻為高價值且均質的polyP,這是一種新型循環P生物經濟模型,該模型成功地將生物質廢物轉化為高價值的生物醫學材料。本研究不僅符合聯合國提出永續發展目標中的第6項「淨水及衛生」、第9項「工業化、創新及基礎建設」第12項「責任消費及生產」,也能解決磷礦資源不足及水體優養化等環境問題。
摘要(英) Phosphorus is an essential component of cells. The availability of phosphate rock, the primary source of phosphorus, is limited and non-renewable. In the past few decades, most phosphorus resources were used to generate fertilizers and cleaning agents. However, improper discharge of phosphorus led to the accumulation of phosphorus and eutrophication in aquatic environments. Therefore, this study first harnessed microalgae to recover phosphorus from piggery wastewater, and then generated insoluble and homogeneous long-chain polyphosphate (polyP) using a streamlined phosphotransferase cascade. The polyP function varies depending on the chain length. Short‐chain polyP (10–100-mer) enhances the healing of wounds and promotes bone regeneration. Mid‐chain polyP (100–300-mer) possesses antimicrobial properties (e.g., M. tuberculosis) and exhibits antiviral effects (e.g., Covid). On the other hand, long‐chain polyP (300–1,300-mer) is useful for creating artificial bone stitches, promoting bone mineralization, and has greater economic and practical value compared to crystals. We successfully extracted polyP mixtures with varying lengths from microalgae, and the extracted polyP mixture was then converted into insoluble and homogenous long-chain polyP by polyphosphate kinase and creatine kinase, respectively. The resulting insoluble polyP particles can be purified in a one-step filtration. Finally, abiotic hydrolysis at 95℃ was used to shorten the length of the polyP, allowing the production of homogenous polyP in different lengths. Altogether, this study reports a novel circular P bioeconomy model that successfully valorizes biomass wastes into high-value biomedical materials.
關鍵字(中) ★ 微藻
★ 循環生物經濟
★ 聚磷酸鹽
★ 聚磷酸酶
★ 肌酸
★ 磷酸肌酸
★ 肌酸激酶
關鍵字(英) ★ microalgae
★ circular bioeconomy
★ polyphosphate
★ polyphosphate kinase
★ creatine
★ creatine phosphate
★ creatine kinase
論文目次 摘要................................................................................................................................. i
Abstract .......................................................................................................................... ii
誌謝.............................................................................................................................. iii
目錄............................................................................................................................... iv
圖目錄.......................................................................................................................... vii
表目錄............................................................................................................................ x
符號說明....................................................................................................................... xi
第一章 前言............................................................................................................ 1
1.1 研究背景........................................................................................................ 1
1.2 研究動機與目的............................................................................................ 2
第二章 文獻回顧.................................................................................................... 3
2.1 磷.................................................................................................................... 3
2.1.1 磷資源之利用與對環境造成的影響............................................ 3
2.1.2 生物除磷技術................................................................................ 4
2.1.3 萃取聚磷酸鹽之技術.................................................................... 8
2.2 酵素.............................................................................................................. 11
2.2.1 酵素動力學.................................................................................. 11
2.2.2 Adenosine kinase(ADK)......................................................... 13
2.2.3 Polyphosphate kinase(PPK) ................................................... 14
2.2.4 Creatine kinase(CK) ............................................................... 16
2.3 產物.............................................................................................................. 16
2.3.1 腺苷三磷酸(Adenosine triphosphate, ATP) .......................... 16
2.3.2 聚磷酸鹽(Polyphosphate, polyP) ........................................... 17 2.3.3 肌酸(Creatine)與磷酸肌酸(Creatine phosphate) ............. 19
第三章 材料與方法.............................................................................................. 22
3.1 實驗架構...................................................................................................... 22
3.2 實驗材料與設備.......................................................................................... 23
3.2.1 實驗藥品...................................................................................... 23
3.2.2 實驗設備...................................................................................... 24
3.3 菌種保存及培養.......................................................................................... 26
3.3.1 菌種保存...................................................................................... 26
3.3.2 菌種培養...................................................................................... 26
3.4 蛋白質實驗分析.......................................................................................... 26
v
3.4.1 目標蛋白表達.............................................................................. 27
3.4.2 蛋白質之萃取及純化.................................................................. 27
3.4.3 蛋白質之定性.............................................................................. 28
3.4.4 蛋白質之定量.............................................................................. 29
3.5 豬場廢水採樣點.......................................................................................... 30
3.6 微藻培養...................................................................................................... 30
3.7 聚磷酸鹽實驗分析...................................................................................... 31
3.7.1 聚磷酸鹽之萃取.......................................................................... 31
3.7.2 聚磷酸鹽之定量.......................................................................... 32
3.8 從微藻polyP再生ATP反應 ..................................................................... 32
3.9 利用酵素從微藻polyP中合成磷酸肌酸反應 .......................................... 33
3.10 利用酵素合成長鏈polyP ........................................................................... 33
3.11 將長鏈polyP均質化 .................................................................................. 34
3.11.1 PPX酵素法 ................................................................................. 34
3.11.2 水解法.......................................................................................... 34
3.12 特性分析...................................................................................................... 34
3.12.1 光學顯微鏡.................................................................................. 34
3.12.2 螢光顯微鏡.................................................................................. 34
3.12.3 TBE-Urea gel ............................................................................... 35
3.12.4 高效液相層析.............................................................................. 36
3.12.5 PolyP長度分布的量化 ............................................................... 37
3.12.6 Hexokinase/Glucose‐6‐Phosphate Dehydrogenase定量分析 .... 37
第四章 結果與討論.............................................................................................. 38
4.1 微藻聚磷酸鹽.............................................................................................. 38
4.2 利用酵素從微藻polyP中合成磷酸肌酸 .................................................. 40
4.3 利用酵素合成長鏈polyP ........................................................................... 47
4.4 以線性方式催化酵素合成長鏈polyP ....................................................... 50
4.5 將長鏈polyP均質化 .................................................................................. 57
第五章 結論與建議.............................................................................................. 61
5.1 結論.............................................................................................................. 61
5.2 建議.............................................................................................................. 61
參考文獻...................................................................................................................... 62
附錄A .......................................................................................................................... 69
vi
從微藻polyP再生ATP .......................................................................................... 69
附錄B .......................................................................................................................... 73
參考文獻 Achbergerová, L., & Nahálka, J. (2011). Polyphosphate-an ancient energy source and active metabolic regulator. Microbial cell factories, 10, 1-14.
Adenosine 5′-triphosphat - ATP. http://www.biosite.dk/leksikon/atp.htm
Ahn, K., & Kornberg, A. (1990). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. Journal of Biological Chemistry, 265(20), 11734-11739.
Akiyama, M., Crooke, E., & Kornberg, A. (1993). An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. Journal of Biological Chemistry, 268(1), 633-639.
Ault-Riché, D., Fraley, C. D., Tzeng, C.-M., & Kornberg, A. (1998). Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. Journal of bacteriology, 180(7), 1841-1847.
Aziz, M., & Ng, W. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource technology, 40(3), 205-208.
Bolesch, D. G., & Keasling, J. D. (2000). Polyphosphate Binding and Chain Length Recognition ofEscherichia coli Exopolyphosphatase. Journal of Biological Chemistry, 275(43), 33814-33819.
Brancaccio, P., Maffulli, N., & Limongelli, F. M. (2007). Creatine kinase monitoring in sport medicine. British medical bulletin, 81(1), 209-230.
Brown, L. R. (2014). Many Countries Reaching Diminishing Returns in Fertilizer Use. Earth Policy Institute.
Cabaniss, C. D. (1990). Creatine kinase. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition.
Cade‐Menun, B., Liu, C., Nunlist, R., & McColl, J. (2002). Soil and litter phosphorus‐31 nuclear magnetic resonance spectroscopy: Extractants, metals, and phosphorus relaxation times. Journal of Environmental Quality, 31(2), 457-465.
Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385-391.
Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience, 61(2), 117-124.
Chu, W., Shi, Y., & Zhang, L. (2022). Recovery of phosphorus in wastewater in the form of polyphosphates: A review. Processes, 10(1), 144.
Dinarvand, P., Hassanian, S. M., Qureshi, S. H., Manithody, C., Eissenberg, J. C., Yang, L., & Rezaie, A. R. (2014). Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood, The Journal of the American Society of Hematology, 123(6), 935-945.
Dunwiddie, T. V., & Masino, S. A. (2001). The role and regulation of adenosine in the central nervous system. Annual review of neuroscience, 24(1), 31-55.
Eixler, S., Selig, U., & Karsten, U. (2005). Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia, 533(1), 135-143.
Fallowfield, H., & Garrett, M. (1985). The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agricultural wastes, 12(2), 111-136.
Fayiga, A. O., & Nwoke, O. (2016). Phosphate rock: origin, importance, environmental impacts, and future roles. Environmental Reviews, 24(4), 403-415.
Ferrucci, V., Kong, D.-Y., Asadzadeh, F., Marrone, L., Boccia, A., Siciliano, R., Criscuolo, G., Anastasio, C., Quarantelli, F., & Comegna, M. (2021). Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Science Signaling, 14(690), eabe5040.
Fuhrman, B. P., & Zimmerman, J. J. (2006). Pediatric critical care. Mosby-Elsevier Philadelphia^ ePA PA.
Gerasimaitė, R., Sharma, S., Desfougeres, Y., Schmidt, A., & Mayer, A. (2014). Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. Journal of cell science, 127(23), 5093-5104.
Gray, M. J., Wholey, W.-Y., Wagner, N. O., Cremers, C. M., Mueller-Schickert, A., Hock, N. T., Krieger, A. G., Smith, E. M., Bender, R. A., & Bardwell, J. C. (2014). Polyphosphate is a primordial chaperone. Molecular cell, 53(5), 689-699.
Hildenbrand, J. C., Reinhardt, S., & Jendrossek, D. (2019). Formation of an Organic–Inorganic Biopolymer: Polyhydroxybutyrate–Polyphosphate. Biomacromolecules, 20(9), 3253-3260.
Hildenbrand, J. C., Teleki, A., & Jendrossek, D. (2020). A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate. Applied microbiology and biotechnology, 104(15), 6659-6667.
Hortobagyi, T., & Denahan, T. (1989). Variability in creatine kinase: methodological,exercise, and clinically related factors. International journal of sports medicine, 10(02), 69-80.
Itoh, H., & Shiba, T. (2004). Polyphosphate synthetic activity of polyphosphate: AMP phosphotransferase in Acinetobacter johnsonii 210A. Journal of bacteriology, 186(15), 5178-5181.
Jiang, S., Wang, J., Qiao, S., & Zhou, J. (2021). Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. Science of the Total Environment, 796, 148907.
Jing, S., Benefield, L., & Hill, W. (1992). Observations relating to enhanced phosphorus removal in biological systems. Water research, 26(2), 213-223.
Kashani, K., Rosner, M. H., & Ostermann, M. (2020). Creatinine: From physiology to clinical application. European journal of internal medicine, 72, 9-14.
Keech, R., & Bowers Jr, G. (1976). Determination of the molar absorptivity of NADH. Clinical Chemistry, 22(2), 141-150.
Kornberg, A., Rao, N. N., & Ault-Riche, D. (1999). Inorganic polyphosphate: a molecule of many functions. Annual review of biochemistry, 68(1), 89-125.
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579.
Kuroda, A., Takiguchi, N., Gotanda, T., Nomura, K., Kato, J., Ikeda, T., & Ohtake, H. (2002). A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling. Biotechnology and Bioengineering, 78(3), 333-338.
Landoni, G., Zangrillo, A., Lomivorotov, V. V., Likhvantsev, V., Ma, J., De Simone, F., & Fominskiy, E. (2016). Cardiac protection with phosphocreatine: a meta-analysis. Interactive Cardiovascular and Thoracic Surgery, 23(4), 637-646.
Lavrinovičs, A., Mežule, L., & Juhna, T. (2020). Microalgae starvation for enhanced phosphorus uptake from municipal wastewater. Algal Research, 52, 102090.
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of environmental management, 248, 109254.
Müller, W. E., Tolba, E., Schröder, H. C., & Wang, X. (2015). Polyphosphate: a morphogenetically active implant material serving as metabolic fuel for bone regeneration. Macromolecular Bioscience, 15(9), 1182-1197.
Müller, W. E., Schepler, H., Neufurth, M., Wang, S., Ferrucci, V., Zollo, M., Tan, R.,Schröder, H. C., & Wang, X. (2023). The physiological polyphosphate as a healing biomaterial for chronic wounds: crucial roles of its antibacterial and unique metabolic energy supplying properties. Journal of Materials Science & Technology, 135, 170-185.
McGriff Jr, E. C., & McKinney, R. E. (1972). The removal of nutrients and organics by activated algae. Water research, 6(10), 1155-1164.
Momeni, A., & Filiaggi, M. J. (2013). Synthesis and characterization of different chain length sodium polyphosphates. Journal of non-crystalline solids, 382, 11-17.
Morrissey, J. H., Choi, S. H., & Smith, S. A. (2012). Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood, The Journal of the American Society of Hematology, 119(25), 5972-5979.
Motomura, K., Hirota, R., Okada, M., Ikeda, T., Ishida, T., & Kuroda, A. (2014). A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Applied and environmental microbiology, 80(8), 2602-2608.
Mukherjee, C., & Ray, K. (2015). An improved method for extraction and quantification of polyphosphate granules from microbial cells. Protoc. Exch, 10.
Nakagaki, M., Inoue, H., Fujie, T., & Ohashi, S. (1963). The polymerization reaction of sodium phosphate. Bulletin of the Chemical Society of Japan, 36(5), 595-599.
Neville, N., Roberge, N., & Jia, Z. (2022). Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. International Journal of Molecular Sciences, 23(2), 670.
Nocek, B. P., Khusnutdinova, A. N., Ruszkowski, M., Flick, R., Burda, M., Batyrova, K., Brown, G., Mucha, A., Joachimiak, A., Berlicki, Ł., & Yakunin, A. F. (2018). Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catalysis, 8(11), 10746-10760. https://doi.org/10.1021/acscatal.8b03151
Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Analytical biochemistry, 328(2), 139-146.
Ong, S.-Y., Wu, J., Moochhala, S. M., Tan, M.-H., & Lu, J. (2008). Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 29(32), 4323-4332.
Park, J., & Gupta, R. (2008). Adenosine kinase and ribokinase–the RK family of proteins. Cellular and molecular life sciences, 65, 2875-2896.
Parnell, A. E., Mordhorst, S., Kemper, F., Giurrandino, M., Prince, J. P., Schwarzer, N. J., Hofer, A., Wohlwend, D., Jessen, H. J., Gerhardt, S., Einsle, O., Oyston, P. C. F., Andexer, J. N., & Roach, P. L. (2018). Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proceedings of the National Academy of Sciences, 115(13), 3350-3355. https://doi.org/10.1073/pnas.1710741115
Rao, N. N., Gómez-García, M. R., & Kornberg, A. (2009). Inorganic polyphosphate: essential for growth and survival. Annual review of biochemistry, 78, 605-647.
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. McGraw-Hill Education.
Roy, R. N., Finck, A., Blair, G., & Tandon, H. (2006). Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertilizer and Plant Nutrition Bulletin, 16, 368.
Schepler, H., Neufurth, M., Wang, S., She, Z., Schröder, H. C., Wang, X., & Müller, W. E. (2022). Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics, 12(1), 18.
Shum, K. T., Lui, E. L. H., Wong, S. C. K., Yeung, P., Sam, L., Wang, Y., Watt, R. M., & Tanner, J. A. (2011). Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry, 50(15), 3261-3271.
Sikk, P., Käämbre, T., Vija, H., Tepp, K., Tiivel, T., Nutt, A., & Saks, V. (2009). Ultra performance liquid chromatography analysis of adenine nucleotides and creatine derivatives for kinetic studies. Proceedings of the Estonian Academy of Sciences, 58(2).
Song, H., Dharmasena, M. N., Wang, C., Shaw, G. X., Cherry, S., Tropea, J. E., Jin, D. J., & Ji, X. (2020). Structure and activity of PPX/GppA homologs from Escherichia coli and Helicobacter pylori. The FEBS journal, 287(9), 1865-1885.
Strumia, E., Pelliccia, F., & D’Ambrosio, G. (2012). Creatine phosphate: pharmacological and clinical perspectives. Advances in therapy, 29(2), 99-123.
Sun, C., Li, Z., Ning, X., Xu, W., & Li, Z. (2021). In vitro biosynthesis of ATP from adenosine and polyphosphate. Bioresources and Bioprocessing, 8(1), 1-10.
Sureka, K., Dey, S., Datta, P., Singh, A. K., Dasgupta, A., Rodrigue, S., Basu, J., & Kundu, M. (2007). Polyphosphate kinase is involved in stress‐induced mprAB‐sigE‐rel signalling in mycobacteria. Molecular microbiology, 65(2), 261-276.
Tam, N., & Wong, Y. (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58(1), 19-34.
Tao, G.-J., Long, X.-Y., Tang, R., Wang, J.-Y., Fang, Z.-D., Xie, C.-X., Wang, T., & Peng, X.-H. (2020). Comparison and optimization of extraction protocol for intracellular phosphorus and its polyphosphate in enhanced biological phosphorus removal (EBPR) sludge. Science of the Total Environment, 699, 134389.
Taussig, L. M., & Landau, L. I. (2008). Pediatric Respiratory Medicine E-Book. Elsevier Health Sciences.
Tumlirsch, T., Sznajder, A., & Jendrossek, D. (2015). Formation of polyphosphate by polyphosphate kinases and its relationship to poly (3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Applied and environmental microbiology, 81(24), 8277-8293.
UN SDGs. (2015). https://sdgs.un.org/goals#goals
Wang, D., Li, Y., Cope, H. A., Li, X., He, P., Liu, C., Li, G., Rahman, S. M., Tooker, N. B., & Bott, C. B. (2021). Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance. Water research, 206, 117726.
Wang, F., Wei, J., Zou, X., Fu, R., Li, J., Wu, D., Lv, H., Zhu, G., Wu, X., & Chen, H. (2019). Enhanced electrochemical phosphate recovery from livestock wastewater by adjusting pH with plant ash. Journal of environmental management, 250, 109473.
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied biochemistry and biotechnology, 162, 1174-1186.
Wang, P.-H., Fujishima, K., Berhanu, S., Kuruma, Y., Jia, T. Z., Khusnutdinova, A. N., Yakunin, A. F., & McGlynn, S. E. (2019). A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synthetic Biology, 9(1), 36-42.
Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and Creatinine Metabolism. PHYSIOLOGICAL REVIEWS, 80(3).
Zhang, H.-L., Fang, W., Wang, Y.-P., Sheng, G.-P., Zeng, R. J., Li, W.-W., & Yu, H.-Q. (2013). Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environmental science & technology, 47(20), 11482-11489.
Zhang, L., Yang, H., Feng, A., & Tan, X. (2017). Study on general situation and analysis of supply and demand of global phosphate resources. Conservation and Utilization of Mineral Resources(5), 105-112.
Zhang, M. Y., Hao, A. M., & Kuba, T. (2013). Extraction of poly-phosphate from the activated sludge with thermal treatment for phosphorus recovery. Advanced Materials Research,
田中智久. (2021). Suppression of Demineralization by Inorganic Polyphosphates with Optimum Chain Length for Stain Removal and Prevention of Stain Deposition 昭和大学].
能量生物學. https://smallcollation.blogspot.com/2013/07/bioenergetics.html#gsc.tab=0
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構.
循環經濟推動方案. (2019). https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3-963e-6b228e713576
歐陽嶠暉. (2016). 下水道學.
指導教授 王柏翔(Po-Hsiang Wang) 審核日期 2023-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明