博碩士論文 110326602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:44.222.64.76
姓名 吳詩韻(Shi-Yun Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
(Reaction characteristics of end-of-life NF membranes treated with ultrasonic-assisted chemical oxidation and feasibility assessment of membrane reuse)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 生物除氮程序(MLE Process)效能評估及污泥活性探討
★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 納濾膜(Nanofiltration, NF)在海水淡化、廢水回收及其他工業分離應用中發揮著重要作用,逐漸替代逆滲透膜(Reverse osmosis, RO),因此預計廢棄(End-of-life, EOL)膜的數量將在未來急劇增加。為了延長使用壽命,可以對膜進行化學處理(例如氯暴露)以恢復滲透通量和脫鹽能力。目前大部分研究主要針對EOL-RO膜,而本研究主要是評估次氯酸鈉(Sodium hypochlorite, NaOCl)再生EOL-NF膜,並基於超聲波(Ultrasound, US)處理加速反應進行,探討最佳的操作條件。
本研究所使用的EOL-NF膜為半芳香族聚醯胺膜(semi-aromatic polyamide membranes),且表面存在疏水性複合型積垢,不可逆污染導致其滲透通量下降而脫鹽率維持在95%以上,故再生考慮保留其良好脫鹽能力的情況下,儘可能的提升滲透通量。EOL-NF膜在使用濃度為3,000 ppm NaOCl靜態浸泡20小時恢復最佳的再生性能,使其滲透通量提升15.51%且脫鹽率維持在95.87%。但使用乙醇預處理並未有更高的效能提升,反而增加化學藥品的消耗。而後利用US (1 W/cm2)輔助化學氧化(3,000 ppm NaOCl),大幅節省膜再生時間,從20 h縮短至45 min (約27倍),使EOL膜的滲透通量提升17.84%且脫鹽率維持在95.01%。但值得注意的是過高功率(1.4 W/cm2)的US會對膜造成物理損傷。
本研究最佳操作條件之再生膜在實際廢水(都市污水二級處理出流水)長達168小時的長期實驗中,不僅達到穩定的滲透通量(6.61 Lh-1m-2bar-1),同時對導電度、濁度、UV254 (紫外光照射254 nm波長)皆有較高的去除效率,分別為66-67%、90-96%、88-94%。且能截留多種離子,其中對二價陽離子(Ca2+、Mg2+)的去除率高達85%以上,對硫酸根離子甚至可以達到99%的去除。其出水水質均可符合目前較為嚴苛的冷卻水回用標準,且離子濃度遠低於基準值。
廢棄膜的再利用已成為循環經濟框架中重要的可持續替代方案。本研究評估了使用超聲波輔助化學氧化法處理EOL-NF膜用於處理生活二級廢水以獲得具有冷卻水標準質量的回收水之可行性,展示了一種能將廢棄納濾膜快速再利用的新方法,從而為解決廢棄膜組件的處置問題提供了實用的解決方案。
摘要(英) Nanofiltration membranes (NF) play an important role in seawater desalination, wastewater recycling, and other industrial separation applications, gradually replacing reverse osmosis membranes (RO), so the number of end-of-life (EOL) membranes is expected to increase dramatically in the future. To extend service life, membranes can be chemically treated (e.g., chlorine exposure) to restore permeate flux and desalination capacity. Most current research focuses on EOL-RO membranes, and this study mainly evaluates the regeneration of EOL-NF membranes with sodium hypochlorite (NaOCl), accelerates the reaction based on ultrasonic (US) treatment, and explores the best operating conditions.
This study uses a semi-aromatic polyamide EOL-NF membrane, which has a hydrophobic complex fouling on its surface. Its permeability decreases due to irreversible fouling, while the salt rejection stays over 95%. Regeneration therefore takes into account raising the permeability as much as feasible while maintaining its strong desalination ability. After 20 hours of statically immersed in 3,000 ppm NaOCl, the EOL-NF membrane regained its optimal regeneration capability, with a 15.51% increase in permeability and a 95.67% salt rejection rate. Nevertheless, applying ethanol pretreatment raises the amount of chemicals used without increasing efficiency. The EOL membrane′s permeability increases by 17.84% and the desalination rate is maintained by using the US (1 W/cm2) to assist with chemical oxidation (3,000 ppm NaOCl). This significantly reduces the membrane regeneration time from 20 hours to 45 minutes (about 27 times). It should be noted, however, that using the US at too high a power (1.4 W/cm2) will cause physical damage to the membrane.
Under ideal operating conditions, the regenerated membrane in this study not only improved conductivity but also reached a stable permeability (6.61 Lh-1m-2bar-1) in a 168-hours long experiment with real wastewater (urban sewage secondary treatment effluent). The removal efficiencies of degree, turbidity, and UV254 are 66–67%, 90–96%, and 88–94%, respectively. It has the ability to intercept a wide range of ions, with the removal rate of divalent cations (Ca2+, Mg2+) reaching over 85% and the removal rate of sulfate ions reaching 99%. Its ion concentration is significantly below the standard value, and its effluent water quality satisfies the more demanding cooling water reuse regulations that are in place at present.
Reusing waste membranes has emerged as a significant sustainable alternative in the framework of the circular economy. This study assesses the feasibility of treating EOL-NF membranes for the treatment of domestic secondary wastewater using ultrasonic-assisted chemical oxidation in order to produce recycled water with cooling water standard quality. A novel technique for the rapid repurposing of EOL membranes is presented, offering a workable resolution to the EOL membrane module disposal issue.
關鍵字(中) ★ 二級廢水
★ 回收再利用
★ 次氯酸鈉
★ 超聲波處理
★ 廢棄納濾膜
關鍵字(英) ★ Secondary wastewater
★ Recycling and reuse
★ Sodium hypochlorite
★ Ultrasonication
★ End-of-life NF membrane
論文目次 摘要 i
Abstract ii
圖摘要 iv
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1-1研究緣起 1
1-2研究目的 3
第二章 文獻回顧 4
2-1納濾膜 4
2-1-1納濾膜類型 5
2-1-2聚醯胺納濾複合膜 7
2-1-3膜污染 9
2-1-4膜清洗 10
2-1-5積垢及膜清洗指標 12
2-2廢棄膜管理 15
2-2-1直接重用 15
2-2-2直接回收 16
2-2-3間接回收 18
2-3次氯酸鈉氧化 19
2-3-1氯化機制 20
2-3-2氯化機制對膜性能的影響 25
2-3-3實驗條件對膜性能的影響 26
2-4有機溶劑預處理 28
2-4-1乙醇作用機制和對膜性能的影響 28
2-4-2乙醇和次氯酸鈉的相互作用及影響 30
2-5超聲波 31
2-5-1空化現象 31
2-5-2超聲波的化學和機械作用 32
2-5-3超聲波操作條件的影響 35
2-6廢棄膜回收再利用用途分析 37
第三章 研究方法 40
3-1研究流程與步驟 40
3-2實驗方法 42
3-2-1廢棄NF膜分析 42
3-2-2膜再生實驗 42
3-2-3再生膜長期過濾實驗 44
3-2-4膜性能分析 47
3-2-5膜表面分析 49
3-3實驗材料與設備 51
3-3-1廢棄的NF膜 51
3-3-2平板式薄膜過濾系統 52
3-3-3卷式薄膜過濾系統 54
3-3-4超聲波清洗機 56
3-3-5實驗材料及分析方法 57
第四章 結果與討論 59
4-1廢棄膜元件的分析 59
4-1-1性能分析 59
4-1-2表面分析 61
4-2廢棄膜NaOCl之再生實驗 68
4-2-1性能分析 68
4-2-2表面分析 72
4-3廢棄膜EtOH+NaOCl之再生實驗 77
4-3-1乙醇預處理分析 77
4-3-2性能分析 83
4-3-3表面分析 86
4-4廢棄膜US+NaOCl之再生實驗 91
4-4-1性能分析 91
4-4-2表面分析 94
4-5再生膜長期過濾實驗及再利用可行性評估 99
4-5-1長期過濾實驗結果 99
4-5-2再利用可行性評估 105
第五章 結論與建議 109
5-1結論 109
5-2建議 111
參考文獻 112
附錄 126
參考文獻 Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077–3092. https://doi.org/10.1016/j.asej.2018.08.001
Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1–3), 390–398. https://doi.org/10.1016/j.jhazmat.2009.12.045
Acero, J. L., Benitez, F. J., Teva, F., & Leal, A. I. (2010). Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chemical Engineering Journal, 163(3), 264–272. https://doi.org/10.1016/j.cej.2010.07.060
Aghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A., & Tiraferri, A. (2020). A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228. https://doi.org/10.1016/j.ultras.2020.106228
Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1), 4–28. https://doi.org/10.1016/j.memsci.2007.06.002
Ang, W. L., McHugh, P. J., & Symes, M. D. (2022). Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chemical Engineering Journal, 444, 136573. https://doi.org/10.1016/j.cej.2022.136573
Arefi-Oskoui S., Khataee A., Safarpour M., Orooji Y., & Vatanpour V. (2019). A review on the applications of ultrasonic technology in membrane bioreactors. Ultrasonics Sonochemistry, 58, 104633. https://doi.org/10.1016/j.ultsonch.2019.104633
Argyle, I. S., Pihlajamäki, A., & Bird, M. R. (2015). Black tea liquor ultrafiltration: Effect of ethanol pre-treatment upon fouling and cleaning characteristics. Food and Bioproducts Processing, 93, 289–297. https://doi.org/10.1016/j.fbp.2014.10.010
Asgharzadehahmadi, S., Abdul Raman, A. A., Parthasarathy, R., & Sajjadi, B. (2016). Sonochemical reactors: Review on features, advantages and limitations. Renewable and Sustainable Energy Reviews, 63, 302–314. https://doi.org/10.1016/j.rser.2016.05.030
Awaleh, M. O., Ahmed, M. M., Soubaneh, Y. D., Hoch, F. B., Bouh, S. M., & Dirieh, E. S. (2013). Wastewater reclamation using discarded reverse osmosis membranes for reuse in irrigation in Djibouti, an arid country. Water Science and Technology, 67(6), 1362–1369. https://doi.org/10.2166/wst.2013.011
Barassi, G., & Borrmann, T. (2012). N-chlorination and Orton Rearrangement of Aromatic Polyamides, Revisited. Journal of Membrane Science & Technology, 02(02). https://doi.org/10.4172/2155-9589.1000115
Chen, D., Weavers, L. K., & Walker, H. W. (2006). Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrasonics Sonochemistry, 13(5), 379–387. https://doi.org/10.1016/j.ultsonch.2005.07.004
Chen, D., Weavers, L., Walker, H., & Lenhart, J. (2006). Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles. Journal of Membrane Science, 276(1–2), 135–144. https://doi.org/10.1016/j.memsci.2005.09.039
Chen, J., Dai, R., & Wang, Z. (2023). Closing the loop of membranes by recycling end-of-life membranes: Comparative life cycle assessment and economic analysis. Resources, Conservation and Recycling, 198, 107153. https://doi.org/10.1016/j.resconrec.2023.107153
Chew, C. M., Aroua, M. K., Hussain, M. A., & Ismail, W. M. Z. W. (2016). Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. Journal of Cleaner Production, 112, 3152–3163. https://doi.org/10.1016/j.jclepro.2015.10.037
Chon, K., Kim, S. J., Moon, J., & Cho, J. (2012). Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant. Water Research, 46(6), 1803–1816. https://doi.org/10.1016/j.watres.2011.12.062
Coutinho de Paula, E., & Amaral, M. C. S. (2017). Extending the life-cycle of reverse osmosis membranes: A review. Waste Management & Research, 35(5), 456–470. https://doi.org/10.1177/0734242X16684383
Coutinho de Paula, E., Gomes, J. C. L., & Amaral, M. C. S. (2017). Recycling of end-of-life reverse osmosis membranes by oxidative treatment: A technical evaluation. Water Science and Technology, 76(3), 605–622. https://doi.org/10.2166/wst.2017.238
Coutinho de Paula, E., Martins, P. V., Ferreira, I. C. de M., & Amaral, M. C. S. (2020). Bench and pilot scale performance assessment of recycled membrane converted from old nanofiltration membranes. Environmental Technology, 41(10), 1232–1244. https://doi.org/10.1080/09593330.2018.1526218
Coutinho de Paula, E., & Santos Amaral, M. C. (2018). Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion. Journal of Cleaner Production, 194, 85–93. https://doi.org/10.1016/j.jclepro.2018.05.099
Do, T. V. (2013). Effects of chlorine exposure on physiochemical properties and performance of polyamide membranes [Nanyang Technological University]. https://doi.org/10.32657/10356/53527
Do, V. T., Tang, C. Y., Reinhard, M., & Leckie, J. O. (2012). Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane—Mechanisms and Implications. Environmental Science & Technology, 46(24), 13184–13192. https://doi.org/10.1021/es302867f
Fan, G., Li, Z., Yan, Z., Wei, Z., Xiao, Y., Chen, S., Shangguan, H., Lin, H., & Chang, H. (2020). Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. Journal of Water Process Engineering, 38, 101547. https://doi.org/10.1016/j.jwpe.2020.101547
Fathizadeh, M., Tien, H. N., Khivantsev, K., Song, Z., Zhou, F., & Yu, M. (2019). Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 451, 125–132. https://doi.org/10.1016/j.desal.2017.07.014
Fernández-Sempere, J., Ruiz-Beviá, F., García-Algado, P., & Salcedo-Díaz, R. (2010). Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry. Desalination, 257(1), 36–45. https://doi.org/10.1016/j.desal.2010.03.010
García-Pacheco, R., Landaburu-Aguirre, J., Molina, S., Rodríguez-Sáez, L., Teli, S. B., & García-Calvo, E. (2015). Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance. Journal of Membrane Science, 495, 305–315. https://doi.org/10.1016/j.memsci.2015.08.025
García-Pacheco, R., Landaburu-Aguirre, J., Terrero-Rodríguez, P., Campos, E., Molina-Serrano, F., Rabadán, J., Zarzo, D., & García-Calvo, E. (2018). Validation of recycled membranes for treating brackish water at pilot scale. Desalination, 433, 199–208. https://doi.org/10.1016/j.desal.2017.12.034
Geens, J., Van der Bruggen, B., & Vandecasteele, C. (2004). Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chemical Engineering Science, 59(5), 1161–1164. https://doi.org/10.1016/j.ces.2004.01.003
Giraldo Mejía, H. F., Toledo-Alarcón, J., Rodriguez, B., Rivas Cifuentes, J., Ovalle Porré, F., Loebel Haeger, M. P., Vicencio Ovalle, N., Lacoma Astudillo, C., & García, A. (2022). Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse. Chemical Engineering Research and Design, 184, 473–487. https://doi.org/10.1016/j.cherd.2022.06.031
Gohil, J. M., & Suresh, A. K. (2017). Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies. Journal of Membrane Science, 541, 108–126. https://doi.org/10.1016/j.memsci.2017.06.092
Guo, W., Ngo, H.-H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27–34. https://doi.org/10.1016/j.biortech.2012.04.089
He, X., Li, B., Wang, P., & Ma, J. (2019). Novel H2O2–MnO2 system for efficient physico-chemical cleaning of fouled ultrafiltration membranes by simultaneous generation of reactive free radicals and oxygen. Water Research, 167, 115111. https://doi.org/10.1016/j.watres.2019.115111
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., & Pandit, A. B. (2019). Cavitationally Driven Transformations: A Technique of Process Intensification. Industrial & Engineering Chemistry Research, 58(15), 5797–5819. https://doi.org/10.1021/acs.iecr.8b04524
Huang, J., Luo, J., Chen, X., Feng, S., & Wan, Y. (2020). How Do Chemical Cleaning Agents Act on Polyamide Nanofiltration Membrane and Fouling Layer? Industrial & Engineering Chemistry Research, 59(40), 17653–17670. https://doi.org/10.1021/acs.iecr.0c03365
Jeżowska, A., Schipolowski, T., & Wozny, G. (2006). Influence of simple pre-treatment methods on properties of membrane material. Desalination, 189(1), 43–52. https://doi.org/10.1016/j.desal.2005.06.011
Ji, M., Luo, J., Wei, J., Woodley, J., Daugaard, A. E., & Pinelo, M. (2019). Commercial polysulfone membranes pretreated with ethanol and NaOH: Effects on permeability, selectivity and antifouling properties. Separation and Purification Technology, 219, 82–89. https://doi.org/10.1016/j.seppur.2019.03.020
Jin, W., Guo, W., Lü, X., Han, P., & Wang, Y. (2008). Effect of the Ultrasound Generated by Flat Plate Transducer Cleaning on Polluted Polyvinylidenefluoride Hollow Fiber Ultrafiltration Membrane. Chinese Journal of Chemical Engineering, 16(5), 801–804. https://doi.org/10.1016/S1004-9541(08)60159-7
Joyce Tiong, T., & Price, G. J. (2012). Ultrasound promoted reaction of Rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments. Ultrasonics Sonochemistry, 19(2), 358–364. https://doi.org/10.1016/j.ultsonch.2011.06.022
Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M., & Yuan, Q. (2007a). Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 300(1), 165–171. https://doi.org/10.1016/j.memsci.2007.05.025
Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M., & Yuan, Q. (2007b). Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 300(1), 165–171. https://doi.org/10.1016/j.memsci.2007.05.025
Khoo, Y. S., Lau, W. J., Hasan, S. W., Salleh, W. N. W., & Ismail, A. F. (2021). New approach of recycling end-of-life reverse osmosis membranes via sonication for microfiltration process. Journal of Environmental Chemical Engineering, 9(6), 106731. https://doi.org/10.1016/j.jece.2021.106731
Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187–207. https://doi.org/10.1016/j.desal.2014.09.015
Kucera, J. (2019). Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes, 9(9), Article 9. https://doi.org/10.3390/membranes9090111
Kulkarni, A., Mukherjee, D., & Gill, W. N. (1996). Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes. Journal of Membrane Science, 114(1), 39–50. https://doi.org/10.1016/0376-7388(95)00271-5
Kwon, Y., & Leckie, J. (2006). Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance. Journal of Membrane Science, 282(1–2), 456–464. https://doi.org/10.1016/j.memsci.2006.06.004
Kwon, Y.-N., Tang, C. Y., & Leckie, J. O. (2008). Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes. Journal of Applied Polymer Science, 108(4), 2061–2066. https://doi.org/10.1002/app.25657
Landaburu-Aguirre, J., García-Pacheco, R., Molina, S., Rodríguez-Sáez, L., Rabadán, J., & García-Calvo, E. (2016). Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 393, 16–30. https://doi.org/10.1016/j.desal.2016.04.002
Lang, K., Sourirajan, S., Matsuura, T., & Chowdhury, G. (1996). A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing. Desalination, 104(3), 185–196. https://doi.org/10.1016/0011-9164(96)00041-0
Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Special Issue in Honour of Professor Takeshi Matsuura on His 75th Birthday, 287, 190–199. https://doi.org/10.1016/j.desal.2011.04.004
Lawler, W., Alvarez-Gaitan, J., Leslie, G., & Le-Clech, P. (2015). Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination, 357, 45–54. https://doi.org/10.1016/j.desal.2014.10.013
Lawler, W., Antony, A., Cran, M., Duke, M., Leslie, G., & Le-Clech, P. (2013). Production and characterisation of UF membranes by chemical conversion of used RO membranes. Journal of Membrane Science, 447, 203–211. https://doi.org/10.1016/j.memsci.2013.07.015
Lee, J.-H., Chung, J. Y., Chan, E. P., & Stafford, C. M. (2013). Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 433, 72–79. https://doi.org/10.1016/j.memsci.2013.01.026
Lejarazu-Larrañaga, A., Landaburu-Aguirre, J., Senán-Salinas, J., Ortiz, J. M., & Molina, S. (2022). Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. Membranes, 12(9), Article 9. https://doi.org/10.3390/membranes12090864
Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R., & García-Calvo, E. (2020a). Circular economy in membrane technology: Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. Journal of Membrane Science, 593, 117423. https://doi.org/10.1016/j.memsci.2019.117423
Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R., & García-Calvo, E. (2020b). Circular economy in membrane technology: Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. Journal of Membrane Science, 593, 117423. https://doi.org/10.1016/j.memsci.2019.117423
Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound—A review. Acoustics Australia, 39(2), 54–63.
Li, Y.-S., Shi, L.-C., Gao, X.-F., & Huang, J.-G. (2016). Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system. Desalination, 390, 62–71. https://doi.org/10.1016/j.desal.2016.04.008
Lin, J., Tang, C. Y., Huang, C., Tang, Y. P., Ye, W., Li, J., Shen, J., Van Den Broeck, R., Van Impe, J., Volodin, A., Van Haesendonck, C., Sotto, A., Luis, P., & Van Der Bruggen, B. (2016). A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. Journal of Membrane Science, 501, 1–14. https://doi.org/10.1016/j.memsci.2015.11.044
Liu, S., Wu, C., Hou, X., She, J., Liu, S., Lu, X., Zhang, H., & Gray, S. (2019). Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane. Journal of Membrane Science, 573, 36–45. https://doi.org/10.1016/j.memsci.2018.11.071
Liu, W., Zhang, J., Cheng, C., Tian, G., & Zhang, C. (2011). Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions. Chemical Engineering Journal, 175, 24–32. https://doi.org/10.1016/j.cej.2011.09.004
Louie, J. S., Pinnau, I., & Reinhard, M. (2011). Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes. Journal of Membrane Science, 367(1), 249–255. https://doi.org/10.1016/j.memsci.2010.10.067
Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2016). Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrasonics Sonochemistry, 33, 18–25. https://doi.org/10.1016/j.ultsonch.2016.04.018
Luo, J., Fang, Z., Smith, R. L., & Qi, X. (2015). Fundamentals of Acoustic Cavitation in Sonochemistry. In Z. Fang, Jr. Smith Richard L., & X. Qi (Eds.), Production of Biofuels and Chemicals with Ultrasound (pp. 3–33). Springer Netherlands. https://doi.org/10.1007/978-94-017-9624-8_1
Luo, J., Guo, S., Qiang, X., Hang, X., Chen, X., & Wan, Y. (2019). Sustainable utilization of cane molasses by an integrated separation process: Interplay between adsorption and nanofiltration. Separation and Purification Technology, 219, 16–24. https://doi.org/10.1016/j.seppur.2019.03.008
Luo, J., & Wan, Y. (2013). Effects of pH and salt on nanofiltration—A critical review. Journal of Membrane Science, 438, 18–28. https://doi.org/10.1016/j.memsci.2013.03.029
Madaeni, S. S., & Samieirad, S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination, 257(1–3), 80–86. https://doi.org/10.1016/j.desal.2010.03.002
Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.-M., Syzaret, P.-Y., & Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220. https://doi.org/10.1016/S0376-7388(00)00534-2
Moreira, V. R., Lebron, Y. A. R., Santos, L. V. de S., & Amaral, M. C. S. (2022). Low-cost recycled end-of-life reverse osmosis membranes for water treatment at the point-of-use. Journal of Cleaner Production, 362, 132495. https://doi.org/10.1016/j.jclepro.2022.132495
Naidu, G., Jeong, S., Kim, S.-J., Kim, I. S., & Vigneswaran, S. (2014). Organic fouling behavior in direct contact membrane distillation. Desalination, 347, 230–239. https://doi.org/10.1016/j.desal.2014.05.045
Naji, O., Al-juboori, R. A., Khan, A., Yadav, S., Altaee, A., Alpatova, A., Soukane, S., & Ghaffour, N. (2021). Ultrasound-assisted membrane technologies for fouling control and performance improvement: A review. Journal of Water Process Engineering, 43, 102268. https://doi.org/10.1016/j.jwpe.2021.102268
Ordóñez, R., Hermosilla, D., Merayo, N., Gascó, A., Negro, C., & Blanco, Á. (2014). Application of Multi-Barrier Membrane Filtration Technologies to Reclaim Municipal Wastewater for Industrial Use. Separation & Purification Reviews, 43(4), 263–310. https://doi.org/10.1080/15422119.2012.758638
Ould Mohamedou, E., Penate Suarez, D. B., Vince, F., Jaouen, P., & Pontie, M. (2010). New lives for old reverse osmosis (RO) membranes. Desalination, 253(1), 62–70. https://doi.org/10.1016/j.desal.2009.11.032
Ozbey-Unal, B., Omwene, P. I., Yagcioglu, M., Balcik-Canbolat, Ç., Karagunduz, A., Keskinler, B., & Dizge, N. (2020). Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: From lab to pilot scale. Journal of Water Process Engineering, 38, 101646. https://doi.org/10.1016/j.jwpe.2020.101646
Paulusse, J. M. J., & Sijbesma, R. P. (2006). Ultrasound in polymer chemistry: Revival of an established technique. Journal of Polymer Science Part A: Polymer Chemistry, 44(19), 5445–5453. https://doi.org/10.1002/pola.21646
Powell, J., Luh, J., & Coronell, O. (2014). Bulk Chlorine Uptake by Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine—Kinetics, Mechanisms, and Modeling. Environmental Science & Technology, 48(5), 2741–2749. https://doi.org/10.1021/es4047632
Powell, J., Luh, J., & Coronell, O. (2015). Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms. Environmental Science & Technology, 49(20), 12136–12144. https://doi.org/10.1021/acs.est.5b02110
Puhan, M. R., Sutariya, B., & Karan, S. (2022). Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. Journal of Membrane Science, 661, 120887. https://doi.org/10.1016/j.memsci.2022.120887
Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., & Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review. Desalination, 459, 59–104. https://doi.org/10.1016/j.desal.2019.02.008
Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143–164. https://doi.org/10.1016/j.desal.2018.04.007
Raval, H. D., Chauhan, V. R., Raval, A. H., & Mishra, S. (2012). Rejuvenation of discarded RO membrane for new applications. Desalination and Water Treatment, 48(1–3), 349–359. https://doi.org/10.1080/19443994.2012.704727
Raval, H. D., Samnani, M. D., & Gauswami, M. V. (2018). Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite. Applied Surface Science, 427, 37–44. https://doi.org/10.1016/j.apsusc.2017.08.132
Raval, H. D., Trivedi, J. J., Joshi, S. V., & Devmurari, C. V. (2010). Flux enhancement of thin film composite RO membrane by controlled chlorine treatment. Desalination, 250(3), 945–949. https://doi.org/10.1016/j.desal.2009.05.005
Ren, Y., Zhu, J., Feng, S., Chen, X., Luo, J., & Wan, Y. (2022). Tuning pore size and surface charge of poly(piperazinamide) nanofiltration membrane by enhanced chemical cleaning treatment. Journal of Membrane Science, 643, 120054. https://doi.org/10.1016/j.memsci.2021.120054
Rezzadori, K., Marques Penha, F., Proner, M. C., Zin, G., Cunha Petrus, J. C., Prádanos, P., Palacio, L., Hernández, A., & Di Luccio, M. (2015). Evaluation of reverse osmosis and nanofiltration membranes performance in the permeation of organic solvents. Journal of Membrane Science, 492, 478–489. https://doi.org/10.1016/j.memsci.2015.06.005
Rodríguez, J. J., Jiménez, V., Trujillo, O., & Veza, JoséM. (2002). Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination, 150(3), 219–225. https://doi.org/10.1016/S0011-9164(02)00977-3
Seah, M. Q., Lau, W. J., Goh, P. S., Tseng, H.-H., Wahab, R. A., & Ismail, A. F. (2020). Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122817
Seibel, F. I., Giubel, G. O. M., Brião, V. B., Shabani, M., & Pontié, M. (2021). End-of-life reverse osmosis membranes: Recycle procedure and its applications for the treatment of brackish and surface water. 11.
Senán-Salinas, J., García-Pacheco, R., Landaburu-Aguirre, J., & García-Calvo, E. (2019). Recycling of end-of-life reverse osmosis membranes: Comparative LCA and cost-effectiveness analysis at pilot scale. Resources, Conservation and Recycling, 150, 104423. https://doi.org/10.1016/j.resconrec.2019.104423
Sert, G., Bunani, S., Kabay, N., Egemen, Ö., Arda, M., Pek, T. Ö., & Yüksel, M. (2016). Investigation of mini pilot scale MBR-NF and MBR-RO integrated systems performance—Preliminary field tests. Journal of Water Process Engineering, 12, 72–77. https://doi.org/10.1016/j.jwpe.2016.06.008
Sewerin, T., Elshof, M. G., Matencio, S., Boerrigter, M., Yu, J., & de Grooth, J. (2021). Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. Membranes, 11(11), Article 11. https://doi.org/10.3390/membranes11110890
Shanmuganathan, S., Vigneswaran, S., Nguyen, T. V., Loganathan, P., & Kandasamy, J. (2015). Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation. Desalination, 364, 119–125. https://doi.org/10.1016/j.desal.2014.12.021
Shen, J., & Schäfer, A. I. (2015). Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of The Total Environment, 527–528, 520–529. https://doi.org/10.1016/j.scitotenv.2015.04.037
Shenvi, S. S., Isloor, A. M., & Ismail, A. F. (2015). A review on RO membrane technology: Developments and challenges. Desalination, 368, 10–26. https://doi.org/10.1016/j.desal.2014.12.042
Shin, M. G., Park, S.-H., Kwon, S. J., Kwon, H.-E., Park, J. B., & Lee, J.-H. (2019). Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. Journal of Membrane Science, 578, 220–229. https://doi.org/10.1016/j.memsci.2019.02.027
Siavash Madaeni, S., Mohamamdi, T., & Kazemi Moghadam, M. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1), 77–82. https://doi.org/10.1016/S0011-9164(01)00117-5
Simon, A., Nghiem, L. D., Le-Clech, P., Khan, S. J., & Drewes, J. E. (2009a). Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. Journal of Membrane Science, 340(1), 16–25. https://doi.org/10.1016/j.memsci.2009.05.005
Simon, A., Nghiem, L. D., Le-Clech, P., Khan, S. J., & Drewes, J. E. (2009b). Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. Journal of Membrane Science, 340(1), 16–25. https://doi.org/10.1016/j.memsci.2009.05.005
Sohrabi, M. R., Madaeni, S. S., Khosravi, M., & Ghaedi, A. M. (2011). Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 267(1), 93–100. https://doi.org/10.1016/j.desal.2010.09.011
Soice, N. P., Maladono, A. C., Takigawa, D. Y., Norman, A. D., Krantz, W. B., & Greenberg, A. R. (2003). Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 90(5), 1173–1184. https://doi.org/10.1002/app.12774
Souza-Chaves, B. M., Alhussaini, M. A., Felix, V., Presson, L. K., Betancourt, W. Q., Hickenbottom, K. L., & Achilli, A. (2022). Extending the life of water reuse reverse osmosis membranes using chlorination. Journal of Membrane Science, 642, 119897. https://doi.org/10.1016/j.memsci.2021.119897
Stolov, M., & Freger, V. (2019). Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study. Environmental Science & Technology, 53(5), 2618–2625. https://doi.org/10.1021/acs.est.8b04790
Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Mohamed Zuki, F., & Jamari, N. L.-A. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials, 12(3), Article 3. https://doi.org/10.3390/nano12030437
Tang, F., Hu, H.-Y., Sun, L.-J., Sun, Y.-X., Shi, N., & Crittenden, J. C. (2016). Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water Research, 90, 329–336. https://doi.org/10.1016/j.watres.2015.12.028
Tavares, T., Tavares, J., León-Zerpa, F. A., Peñate-Suárez, B., & Ramos-Martín, A. (2022). Assessment of Processes to Increase the Useful Life and the Reuse of Reverse Osmosis Elements in Cape Verde and Macaronesia. Membranes, 12(6), 613. https://doi.org/10.3390/membranes12060613
Thombre, N. V., Gadhekar, A. P., Patwardhan, A. V., & Gogate, P. R. (2020). Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrasonics Sonochemistry, 62, 104891. https://doi.org/10.1016/j.ultsonch.2019.104891
Thompson, L. H., & Doraiswamy, L. K. (1999). Sonochemistry: Science and Engineering. Industrial & Engineering Chemistry Research, 38(4), 1215–1249. https://doi.org/10.1021/ie9804172
Tian, J., Chen, Z., Yang, Y., Liang, H., Nan, J., & Li, G. (2010). Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Research, 44(1), 59–68. https://doi.org/10.1016/j.watres.2009.08.053
Tran, T., Bolto, B., Gray, S., Hoang, M., & Ostarcevic, E. (2007). An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Research, 41(17), 3915–3923. https://doi.org/10.1016/j.watres.2007.06.008
Tsui, E. M., & Cheryan, M. (2004). Characteristics of nanofiltration membranes in aqueous ethanol. Journal of Membrane Science, 237(1), 61–69. https://doi.org/10.1016/j.memsci.2004.02.026
Ullah, M. N., Mushtaq, M. U., Adil, M. A., Sanaullah, K., Ashas, R., & Sabir, R. (2023). Application of UF and RO for power plant’s wastewater treatment and recycling for environmental sustainability. Journal of Water and Climate Change, 14(6), 1991–2006. https://doi.org/10.2166/wcc.2023.071
Vajnhandl, S., & Majcen Le Marechal, A. (2005). Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes and Pigments, 65(2), 89–101. https://doi.org/10.1016/j.dyepig.2004.06.012
Verbeke, R., Eyley, S., Szymczyk, A., Thielemans, W., & Vankelecom, I. F. J. (2020). Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. Journal of Membrane Science, 611, 118400. https://doi.org/10.1016/j.memsci.2020.118400
Verbeke, R., Gómez, V., & Vankelecom, I. F. J. (2017). Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 72, 1–15. https://doi.org/10.1016/j.progpolymsci.2017.05.003
Wang, J., Gao, X., Xu, Y., Wang, Q., Zhang, Y., Wang, X., & Gao, C. (2016). Ultrasonic-assisted acid cleaning of nanofiltration membranes fouled by inorganic scales in arsenic-rich brackish water. Desalination, 377, 172–177. https://doi.org/10.1016/j.desal.2015.09.021
Wang, J., Xing, J., Li, G., Yao, Z., Ni, Z., Wang, J., Liang, S., Zhou, Z., & Zhang, L. (2023). How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy. Desalination, 561, 116702. https://doi.org/10.1016/j.desal.2023.116702
Wu, D., Martin, J., Du, J. R., Zhang, Y., Lawless, D., & Feng, X. (2015). Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 487, 256–270. https://doi.org/10.1016/j.memsci.2015.02.021
Xie, L., He, X., Liu, Y., Cao, C., & Zhang, W. (2022). Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect. Chemosphere, 292, 133444. https://doi.org/10.1016/j.chemosphere.2021.133444
Xu, J., Wang, Z., Wei, X., Yang, S., Wang, J., & Wang, S. (2013). The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: New insights from the study of self-made membrane. Desalination, 313, 145–155. https://doi.org/10.1016/j.desal.2012.12.020
Xu, P., Bellona, C., & Drewes, J. E. (2010a). Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 12. https://doi.org/10.1016/j.memsci.2010.02.037
Xu, P., Bellona, C., & Drewes, J. E. (2010b). Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 353(1), 111–121. https://doi.org/10.1016/j.memsci.2010.02.037
Young, F. R. (1999). Cavitation. World Scientific.
Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568–576. https://doi.org/10.1016/j.ultsonch.2015.06.013
Zhai, X., Meng, J., Li, R., Ni, L., & Zhang, Y. (2011). Hypochlorite treatment on thin film composite RO membrane to improve boron removal performance. Desalination, 274(1–3), 136–143. https://doi.org/10.1016/j.desal.2011.02.001
Zhang, R., Su, S., Gao, S., & Tian, J. (2021). Reconstruction of the polyamide film in nanofiltration membranes via the post-treatment with a ternary mixture of ethanol-water-NaOH: Mechanism and effect. Desalination, 519, 115317. https://doi.org/10.1016/j.desal.2021.115317
Zhang, S., Fu, F., & Chung, T.-S. (2013). Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chemical Engineering Science, 87, 40–50. https://doi.org/10.1016/j.ces.2012.09.014
Zhang, Z., Fan, K., Liu, Y., & Xia, S. (2023). A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. Science of The Total Environment, 858, 159922. https://doi.org/10.1016/j.scitotenv.2022.159922
Zhao, D., Qiu, L., Song, J., Liu, J., Wang, Z., Zhu, Y., & Liu, G. (2019). Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Science of The Total Environment, 652, 256–266. https://doi.org/10.1016/j.scitotenv.2018.10.221
Zhao, Y., Wu, K., Wang, Z., Zhao, L., & Li, S. (2000). Fouling and cleaning of membrane-a literature review. Journal of Environmental Sciences, 12(2), 241–251.
Zhao, Y., & Yuan, Q. (2006). Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions. Journal of Membrane Science, 280(1–2), 195–201. https://doi.org/10.1016/j.memsci.2006.01.026
Zheng, L., Yu, D., Wang, G., Yue, Z., Zhang, C., Wang, Y., Zhang, J., Wang, J., Liang, G., & Wei, Y. (2018). Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization. Journal of Membrane Science, 563, 843–856. https://doi.org/10.1016/j.memsci.2018.06.043
林智雄. (2018). 影響NF薄膜濃度極化因子之探討—離子種類、濃度及掃流速度. (碩士), 朝陽科技大學, 台中市.
經濟部水利署. (2017). 非系統再生水利用技術參考說明
經濟部水利署. (2018). 再生水用於工業用途水質基礎建議值
指導教授 莊順興 審核日期 2023-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明