博碩士論文 110327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.136.18.48
姓名 李韋廷(Wei-Ting Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超快雷射薄石英晶圓微鑽孔研究
(Research on Micro-drilling of Thin Quartz Wafer Using Ultrashort Pulsed Laser)
相關論文
★ 新型光學式自動聚焦顯微鏡的設計與其性能分析★ 以田口法作微型動壓軸承最佳化設計與性能評價
★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石英晶體擁有比陶瓷、鎳鉻合金更優異的化學穩定性,因此被廣泛投入在半導體、光機電等科技行業的儀器和設備上,自 1880 年居里兄弟(Curie)發現壓電效應後,眾多自然界或人工合成的壓電材料逐漸被挖掘出來,20 世紀中期以α-quartz單晶石英為載體的振盪器開始大量使用於電子網絡系統,作為時脈訊號產生的核心,AT-cut 切向的單晶石英具有良好的頻率穩定性,是該類被動、主動元件運用的大宗。到了21世紀,從 4G、5G 資訊網絡,到工業機電系統,太空衛星也包含在通訊循環的體系中,每年需製造 200 億顆以上的電子元件供應需求,並對數位訊號的穩定性有更上一層的要求。除此之外,為符合商業需求,過去幾十年裡,半導體相關行業都在追求更精細的尺寸、更低的成本和更快的速度,開發新興技術或持續精進原有成熟製程勢在必行,如何快速薄石英晶圓上鑽出微米級的孔洞,用以佈線、蒸鍍金屬電極連接內部振盪晶圓和增加晶體運行得穩定性,為一項極具前景的研究。石英晶體的硬脆和高穿透特性讓其在精密加工領域具備一定的挑戰性,超快雷射因其具備低熱影響、高加工速度和低材料耗損率,被視為極有前景的加工方式之一,本研究使用波長 1030 nm 及 515 nm 之振鏡飛秒雷射系統,探討雷射光束特性及掃描策略對於厚度 80 μm 石英晶圓鑽孔的影響,並配合氫氧化鉀(KOH,35 wt.%)蝕刻後處理,實驗結果證實相較於 1030 nm的P偏振紅外雷射,515 nm 之 S 偏振綠光雷射能夠精準將圓孔內部的材料去除或改質,並成功於 3.6 s 和 2.5 s 內完成直徑70和50 μm 的微孔加工,TEM 檢測的結果亦表明 KOH 蝕刻的成效十分優異,孔洞內無多晶、非晶區的存在,實現錐度最佳可小於 1˚之高品質通孔,參數優化後可期媲美旋切、貝索光束等先進製程,降低生產成本。
摘要(英) Quartz crystals possess superior chemical stability compared to ceramics and nickel-chromium alloys, making them widely used in instruments and equipment in industries such as semiconductors and optomechanics. Since the discovery of the piezoelectric effect by the Curie brothers in 1880, numerous naturally occurring or artificially synthesized piezoelectric materials have been gradually unearthed. In the mid-20th century, oscillators using α-quartz single-crystal quartz as a carrier began to be extensively used in electronic network systems as the core for generating clock signals. AT-cut quartz crystals exhibit excellent frequency
stability and are widely utilized in passive and active components.
In the 21st century, from 4G and 5G information networks to industrial electromechanical systems and even space satellites, all encompassed in the communication
infrastructure, the demand for manufacturing over 20 billion electronic components annually has grown. Therefore, there is a higher requirement for the stability of digital signals. In addition, to meet commercial needs, the semiconductor industry and related sectors have been pursuing more precise dimensions, lower costs, and faster speeds over the past few decades, which necessitates the development of new technologies or the continuous
improvement of existing mature processes. The rapid drilling of micrometer-sized holes on thin quartz wafers for wiring, metal electrode deposition, internal oscillator wafer
connections, and improved crystal stability is a highly promising research area.
The hardness and brittleness of quartz crystals, as well as their high penetration
characteristics, have posed significant challenges in the field of precision machining.
Ultrashort pulsed lasers, due to their low thermal impact, high processing speed, and low
material consumption rate, are considered one of the promising methods for machining
quartz. In this study, a femtosecond laser galvanometer system with wavelengths of 1030 nm and 515 nm was used to investigate the influence of laser beam properties and scanning strategies on drilling holes in 80 μm thick quartz wafers. The experiment was combined with post-processing using a 35 wt.% potassium hydroxide (KOH) etching solution to remove the residual recast layer after laser processing.
The experimental results confirmed that the 515 nm S-polarized green laser, compared to the 1030 nm P-polarized infrared laser, can precisely remove or modify the material inside the holes. Micro-drilling with diameters of 70 μm and 50 μm was successfully completed within 3.6 s and 2.5 s, respectively. Transmission electron microscopy (TEM) analysis also indicated excellent performance of KOH etching, as no polycrystalline or amorphous regions were observed inside the holes. This achieved high-quality through-holes with a taper angle of less than 1°, and with parameter optimization, the process can be expected to be
comparable to advanced techniques such as trepanning optics system and Bessel beam, thereby reducing production costs.
關鍵字(中) ★ 石英
★ 飛秒雷射
★ 雷射輔助濕式蝕刻微鑽孔
★ 偏極化效應
★ 孵化效應
關鍵字(英) ★ Quartz
★ Femtosecond laser
★ Laser assisted wet etching micro-hole drilling
★ Polarization effect
★ Incubation effect
論文目次 大綱
中文摘要........................................................................................................................i
Abstract ........................................................................................................................ii
大綱..............................................................................................................................iv
圖目錄.........................................................................................................................vii
表目錄......................................................................................................................... xv
Chapter 1 緒論...................................................................................................... - 1 -
1.1 前言 ................................................................................................................ - 1 -
1.1.1 石英長晶簡介......................................................................................... - 1 -
1.1.2 合成石英(α-quartz)基礎性質介紹......................................................... - 3 -
1.1.3 石英晶體切割種類與應用-(AT-cut) ..................................................... - 5 -
1.2 研究背景、目的與方法 ................................................................................ - 7 -
1.2.1 石英壓電元件應用簡介......................................................................... - 7 -
1.2.2 晶體振盪器發展概況............................................................................. - 8 -
1.2.3 薄石英晶圓雷射微鑽孔技術............................................................... - 10 -
Chapter 2 文獻回顧............................................................................................ - 13 -
2.1 石英加工方法介紹 ...................................................................................... - 13 -
2.1.1 硬脆透明材料機械加工方式介紹....................................................... - 13 -
2.1.2 硬脆透明材料非接觸式加工介紹....................................................... - 19 -
2.1.3 乾式、濕式蝕刻鑽孔技術介紹........................................................... - 24 -
2.1.4 雷射加工(Laser Machining)與各類加工技術比較............................. - 28 -
2.2 飛秒雷射加工技術 ...................................................................................... - 34 -
2.2.1 雷射種類與飛秒雷射介紹................................................................... - 34 -
2.2.2 飛秒雷射材料加工機制....................................................................... - 37 -
2.2.3 飛秒雷射鑽孔方式及策略回顧........................................................... - 41 -
2.3 飛秒雷射鑽孔影響因素 .............................................................................. - 52 -
2.3.1 α-quartz 光學與物理特性 ..................................................................... - 52 -
2.3.2 飛秒脈衝雷射加工現象....................................................................... - 56 -
2.4 傳承與創新 .................................................................................................. - 60 -
Chapter 3 實驗方法............................................................................................ - 61 -
3.1 實驗流程 ...................................................................................................... - 61 -
3.2 實驗材料與製備 .......................................................................................... - 61 -
3.2.1 實驗材料............................................................................................... - 61 -
3.2.2 石英晶圓清洗程序............................................................................... - 62 -
3.3 雷射結合溼式蝕刻複合式石英鑽孔 .......................................................... - 65 -
3.3.1 飛秒雷射規格及系統........................................................................... - 65 -
3.3.2 雷射光束配置細節............................................................................... - 66 -
3.3.3 第一道製程‐雷射加工......................................................................... - 70 -
3.3.4 第二道製程‐KOH 溼式蝕刻............................................................... - 72 -
3.4 實驗量測、分析設備介紹 .......................................................................... - 74 -
3.5 實驗材料與設備儀器清單 .......................................................................... - 76 -
Chapter 4 實驗結果與討論................................................................................ - 77 -
4.1 雷射參數選定 .............................................................................................. - 78 -
4.1.1 振鏡系統與物鏡系統單發脈衝加工閾值能量................................... - 79 -
4.1.2 偏振特性與光源對石英的加工影響................................................... - 85 -
4.1.3 孵化效應(Incubation effect)對閾值的影響......................................... - 89 -
4.1.4 雷射加工參數選擇............................................................................... - 95 -
4.2 IR-P 偏振雷射光初步鑽孔測試 ................................................................. - 97 -
4.2.1 鑽孔焦點位置測試............................................................................... - 97 -
4.2.2 正負離焦鑽孔加工測試..................................................................... - 101 -
4.2.3 重複率與能量對於 BU 鑽孔的影響 ................................................. - 105 -
4.3 StrategyⅠ兩階段鑽孔結果與討論.......................................................... - 109 -
4.3.1 第一階段(Stage 1): 通孔進程........................................................... - 109 -
4.3.2 第二階段(Stage 2): 孔徑修飾........................................................... - 111 -
4.3.3 StrategyⅠ之鑽孔問題與緣由討論..................................................... - 113 -
4.3.4 StrategyⅠ優化層面分析..................................................................... - 117 -
4.4 StrategyⅡ兩階段式鑽孔結果與討論...................................................... - 121 -
4.4.1 掃描策略更改機制介紹..................................................................... - 121 -
4.4.2 雙孔徑初步 StrategyⅡ鑽孔特徵討論............................................... - 122 -
4.4.3 StrategyⅡ鑽孔參數優化與特徵分析................................................. - 126 -
4.4.4 蝕刻後圓孔形貌與熱影響區檢測..................................................... - 130 -
4.5 飛秒雷射薄石英晶圓鑽孔技術總結 ........................................................ - 136 -
4.5.1 振鏡掃描策略與結果總攬................................................................. - 136 -
4.5.2 各式雷射透明硬脆材料鑽孔文獻比較............................................. - 140 -
Chapter 5 結論.................................................................................................. - 143 -
參考文獻…………………………………………………………………………- 144 -
碩士論文口試教授問題集………………………………………………………- 144 -
參考文獻 [1] "Synthetic Quartz Crystal," CO. LTD, NIHON DEMPA KOGYO, 2023. [Online].
Available: https://www.ndk.com/en/products/app/index.html
[2] "From natural quartz to precision time keeping," QuartzCom AG, 2023. [Online].
Available: https://www.quartzcom.com/en/about-quartz-crystals-_content---1--
1021.html
[3] A. C. Walker, "Hydrothermal Growth of Quartz Crystals as Related to Phase
Considerations," Industrial and Engineering Chemistry Research, 1954.
[4] J. C. Brice, " Crystals for quartz resonators," Reviews of Modern Physics, 1985.
[5] F. Iwasaki and H. Iwasaki, "Historical review of quartz crystal growth," Journal of
Crystal Growth, 2002.
[6] K. I. Vatalis, G. Charalambides, and N. P. Benetis, "Market of High Purity Quartz
Innovative Applications," Procedia Economics and Finance, vol. 24, pp. 734-742,
2015, doi: 10.1016/s2212-5671(15)00688-7.
[7] S. M. Botis, Y. Pan, S. Nokhrin, and M. J. Nilges, "Natural Radiation-Induced Damage
in Quartz. Iii. A New Ozonide Radical in Drusy Quartz from the Athabasca Basin,
Saskatchewan," The Canadian Mineralogist, vol. 46, no. 1, pp. 125-138, 2008, doi:
10.3749/canmin.46.1.125.
[8] R. Ratnawulan, A. Fauzi, and A. E. S. Hayati, "Characterization of Silica Sand Due to
The Influence of Calcination Temperature," Materials Science and Engineering, 2018.
[9] M. He, W. Yan, Y. Chang, K. Liu, and X. Liu, "Fundamental infrared absorption
features of α-quartz: An unpolarized single-crystal absorption infrared spectroscopic
study," Vibrational Spectroscopy, vol. 101, pp. 52-63, 2019, doi:
10.1016/j.vibspec.2019.02.003.
[10] A. Ballato, " Piezoelectricity: Venerable Effects, Modern Thrusts," ARMY
RESEARCH LABORATORY, 1994.
[11] V. E. Bottom, "A HISTORY OF THE QUARTZ CRYSTAL ININSTRY IN THE
USA," 35th Annual Symposium on Frequency Control, IEEE, 1981.
[12] C. J. Chen, A. Schwarz, R. Wiesendanger, O. Horn, and J. Muller, "Three-electrode
self-actuating self-sensing quartz cantilever: design, analysis, and experimental
verification," Rev Sci Instrum, vol. 81, no. 5, p. 053702, May 2010, doi:
10.1063/1.3407507.
[13] W. H. Hsiao, "Fabrication of minaturied QCM bio-sensing matrix by semiconductor
processing," National Yang Ming Chiao Tung University, 2004.
[14] L. Phillip Technologies. " AT-cut Quartz Frequency-Temperature Characteristics "
https://www.philliptech.com/knowledgebase/crystal-stable-100c-150c-water-coolingneeded/ (accessed.
[15] " Application Notes: Quartz Crystal Theory." FCD-Tech B.V. https://www.fcdtech.com/application-notes (accessed.
[16] Y. S. Wu, S. S. Wang, and D. Tsai, "Growth of Single Crystal Quartz by Hydrothermal
Method and Numerical Analysis," Journal of China Institute of Technology, 2007.
[17] 王依福、陳吉勤、王炳予、鄔梅青、王依德, "一種醫用光學水晶的生長方法,"
China, 2014.
[18] J. S. Danel and G. Delapierre, " Quartz: a material for microdevices," Journal of
Micromechanics and Microengineering, 1991, doi: 10.1088/0960-1317/1/4/001.
[19] S. R. Cantor, A. Stern, and B. Levy, "Clock Technology," Proceedings of the 55th
Annual Meeting of The Institute of Navigation 1999.
[20] H. Hida et al., "Fabrication of a quartz tuning-fork probe with a sharp tip for AFM
systems," Sensors and Actuators A: Physical, vol. 148, no. 1, pp. 311-318, 2008, doi:
10.1016/j.sna.2008.08.021.
[21] L. Djoumi, M. Vanotti, and V. Blondeau-Patissier, "Real Time Cascade Impactor
Based On Surface Acoustic Wave Delay Lines for PM10 and PM2.5 Mass
Concentration Measurement," Sensors (Basel), vol. 18, no. 1, Jan 16 2018, doi:
10.3390/s18010255.
[22] G. T. Schmidt, "INS/GPS Technology Trends " Massachusetts Institute of Technology,
2010.
[23] J. R. Vig, "Quartz Crystal Resonators and Oscillators - For Frequency Control and
Timing Applications - A Tutorial," IEEE, 2014, doi: 10.13140/2.1.2134.0962.
[24] M. M. R. P. Ltd., "Crystal Oscillators Market ", 2021. [Online]. Available: Crystal
Oscillators Market - Global Industry Analysis and Forecast 2029
(maximizemarketresearch.com)
[25] T. T. Inc., "TXC 法說資料 ", 2022. [Online]. Available:
https://poorstock.com/earningcall/3042
[26] T. Technology, "TST 法說資料," 2022. [Online]. Available:
https://poorstock.com/earningcall/3221.
[27] 迁本正美 and 廖詩文, "高頻通訊用晶體振盪器的技術," 電子與材料雜誌 13 期
126-131, 2002.
[28] A. T. C. LTD., " 愛普生石英振盪器產品特性和設計概念," 2022. [Online].
Available: https://zh-tw.argotech.com.tw/news-detail/quartz-oscillator-productfeatures-and-design-concepts.htm.
[29] G. Jovanovski, T. Šijakova-Ivanova, I. Boev, B. Boev, and P. Makreski, "Intriguing
minerals: quartz and its polymorphic modifications," ChemTexts, vol. 8, no. 3, 2022,
doi: 10.1007/s40828-022-00165-2.
[30] T. Q. Page, "Quartz Crystals - Twinning," 2016. [Online]. Available:
http://www.quartzpage.de/crs_twins.html
[31] J. Hecht, "A short history of laser development," APPLIED OPTICS, 2010, doi:
10.1117/1.3483597.
[32] L. Hof and J. Abou Ziki, "Micro-Hole Drilling on Glass Substrates—A Review,"
Micromachines, vol. 8, no. 2, 2017, doi: 10.3390/mi8020053.
[33] G. Shannon and S. Hypsh, "Femtosecond lasers improve processing of metal, plastic
parts," Assembly Magazine, 2015. [Online]. Available:
https://www.assemblymag.com/articles/93059-femtosecond-lasers-improveprocessing-of-metal-plastic-parts
[34] C. P. Grigoropoulos et al., "Laser processing transparent materials with nanosecond,
picosecond and femtosecond pulses for industrial applications," presented at the Laser
Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII,
2018.
[35] P. A. Lee and B. H. Kim, "A Study of Microdrilling of Fused Silica Using EDMed
PCD Tools," Applied Sciences, vol. 12, no. 21, 2022, doi: 10.3390/app122111166.
[36] A. K. Jain and P. M. Pandey, "Study of Peck drilling of borosilicate glass with μRUM
process for MEMS," Journal of Manufacturing Processes, vol. 22, pp. 134-150, 2016,
doi: 10.1016/j.jmapro.2016.02.001.
[37] B. J. Park, Y. J. Choi, and C. N. Chu, "Prevention of Exit Crack in Micro Drilling of
Soda-Lime Glass," CIRP Annals, vol. 51, no. 1, pp. 347-350, 2002, doi:
10.1016/s0007-8506(07)61533-9.
[38] K. Egashira, R. Kumagai, R. Okina, K. Yamaguchi, and M. Ota, "Drilling of
microholes down to 10μm in diameter using ultrasonic grinding," Precision
Engineering, vol. 38, no. 3, pp. 605-610, 2014, doi:
10.1016/j.precisioneng.2014.02.010.
[39] J. Wang, P. Feng, J. Zhang, C. Zhang, and Z. Pei, "Modeling the dependency of edge
chipping size on the material properties and cutting force for rotary ultrasonic drilling
of brittle materials," International Journal of Machine Tools and Manufacture, vol.
101, pp. 18-27, 2016, doi: 10.1016/j.ijmachtools.2015.10.005.
[40] B. H. Yan, A. C. Wang, C. Y. Huang, and F. Y. Huang, "Study of precision micro-holes
in borosilicate glass using micro EDM combined with micro ultrasonic vibration
machining," International Journal of Machine Tools & Manufacture, 2002.
[41] W. Ming et al., "A comprehensive review of electric discharge machining of advanced
ceramics," Ceramics International, vol. 46, no. 14, pp. 21813-21838, 2020, doi:
10.1016/j.ceramint.2020.05.207.
[42] A. Schubert, H. Zeidler, and M. H. Oschätzchen, "Enhancing Micro-EDM using
Ultrasonic Vibration and Approaches for Machining of Nonconducting Ceramics,"
Journal of Mechanical Engineering, 2013.
[43] B.-H. Yan, C.-T. Yang, F.-Y. Huang, and Z.-H. Lu, "Electrophoretic deposition
grinding (EPDG) for improving the precision of microholes drilled via ECDM,"
Journal of Micromechanics and Microengineering, vol. 17, no. 2, pp. 376-383, 2007,
doi: 10.1088/0960-1317/17/2/025.
[44] J.-C. Chen, Y.-A. Lin, C.-L. Kuo, C.-C. Ho, and W.-H. Yau, "An Improvement in the
Quality of Holes Drilled in Quartz Glassby Electrochemical Discharge Machining,"
Smart Science, vol. 7, no. 3, pp. 169-174, 2019, doi:
10.1080/23080477.2019.1597579.
[45] S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely,
"Development of Through Glass Via (TGV Formation Technology Using Electrical
Discharging for 2.5/3D Integrated Packaging," IEEE Electronic Components &
Technology Conference, 2013.
[46] Y. H. Tang, Y. H. Lin, P. L. Chen, M. H. Shiao, and C. N. Hsiao, "Comparison of
optimised conditions for inductively coupled plasma‐reactive ion etching of quartz
substrates and its optical applications," Micro & Nano Letters, vol. 9, no. 6, pp. 395-
398, 2014, doi: 10.1049/mnl.2014.0093.
[47] X. Li, T. Abe, Y. Liu, and M. Esashi, "Fabrication of high-density electrical feedthroughs by deep-reactive-ion etching of Pyrex glass," Journal of
Microelectromechanical Systems, vol. 11, no. 6, pp. 625-630, 2002, doi:
10.1109/jmems.2002.805211.
[48] T. Abe and Y. Itasaka, "A fabrication method of high-Q quartz crystal resonator using
double-layered etching mask for DRIE," Sensors and Actuators A: Physical, vol. 188,
pp. 503-506, 2012, doi: 10.1016/j.sna.2012.02.006.
[49] Y. Chia-Liang, "Run-to-Run Etching Depth Control for TCP Poly-Silicon etcher,"
Department of Mechanical Engineering, National Chiao Tung University, 2008.
[50] M. Hermans, "Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds
Using KOH," Journal of Laser Micro/Nanoengineering, vol. 9, no. 2, pp. 126-131,
2014, doi: 10.2961/jlmn.2014.02.0009.
[51] T. G. Konstantinova et al., "Deep multilevel wet etching of fused silica glass
microstructures in BOE solution," Applied Physics A: Materials Science and
Processing, 2022.
[52] C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, "Characterization of masking
layers for deep wet etching of glass in an improved HF/HCl solution," Surface and
Coatings Technology, vol. 198, no. 1-3, pp. 314-318, 2005, doi:
10.1016/j.surfcoat.2004.10.094.
[53] S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, "Examination of Etching Agent
and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside
Vitreous Silica Substrates," The Journal of Physical Chemistry, 2009.
[54] O. Svelto and D. C. Hanna, Principles of Lasers Fifth edition. 2010.
[55] O. Photonics. "Hermite-Gaussian Modes." http://www.optiqueingenieur.org/en/courses/OPI_ang_M01_C03/co/Grain_OPI_ang_M01_C03.html
(accessed.
[56] X. Xie, C. Zhou, X. Wei, W. Hu, and Q. Ren, "Laser machining of transparent brittle
materials: from machining strategies to applications," Opto-Electronic Advances, vol.
2, no. 1, pp. 18001701-18001713, 2019, doi: 10.29026/oea.2019.180017.
[57] S. D. Jackson and A. Lauto, "Diode-pumped fiber lasers: a new clinical tool?," Lasers
Surg Med, vol. 30, no. 3, pp. 184-90, 2002, doi: 10.1002/lsm.10023.
[58] N. Faisal, D. Zindani, K. Kumar, and S. Bhowmik, "Laser Micromachining of
Engineering Materials—A Review," in Micro and Nano Machining of Engineering
Materials, (Materials Forming, Machining and Tribology, 2019, ch. Chapter 6, pp.
121-136.
[59] B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. Clokie, and R. J. Miller,
"Effects of femtosecond laser irradiation on osseous tissues," Lasers Surg Med, vol.
39, no. 3, pp. 273-85, Mar 2007, doi: 10.1002/lsm.20466.
[60] Chris B Schaffer, Andre Brodeur, and E. Mazur, "Laser-induced breakdown and
damage in bulk transparent materials induced by tightly focused femtosecond laser
pulses," Measurement Science and Technology, 2001.
[61] D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, "Femtosecond laser induced
phenomena in transparent solid materials: Fundamentals and applications," Progress
in Materials Science, vol. 76, pp. 154-228, 2016, doi: 10.1016/j.pmatsci.2015.09.002.
[62] R. Wang et al., "Identification of tunneling and multiphoton ionization in intermediate
Keldysh parameter regime," Opt Express, vol. 27, no. 5, pp. 6471-6482, Mar 4 2019,
doi: 10.1364/OE.27.006471.
[63] A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O׳Connor, "Laser scribing of
thin dielectrics with polarised ultrashort pulses," Optics and Lasers in Engineering,
vol. 60, pp. 18-24, 2014, doi: 10.1016/j.optlaseng.2014.03.010.
[64] J. M. Iglesias, M. J. Mart´ın, E. Pascual, and R. Rengel, "Carrier-carrier and carrierphonon interactions in the dynamics of photoexcited electrons in graphene," Journal
of Physics: Conference Series 647, 2015.
[65] S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy Theory and
Applications (no. Springer Series in Optical Sciences). 2014.
[66] A. K. Nath, "Laser Drilling of Metallic and Nonmetallic Substrates," in
Comprehensive Materials Processing, 2014, pp. 115-175.
[67] Y. Pan et al., "Millisecond laser machining of transparent materials assisted by a
nanosecond laser with different delays," Opt Lett, vol. 41, no. 12, pp. 2807-10, Jun 15
2016, doi: 10.1364/OL.41.002807.
[68] P. Balage, J. Lopez, G. Bonamis, C. Hönninger, and I. Manek-Hönninger, "Crack-free
high-aspect ratio holes in glasses by top–down percussion drilling with infrared
femtosecond laser GHz-bursts," International Journal of Extreme Manufacturing, vol.
5, no. 1, 2022, doi: 10.1088/2631-7990/acaa14.
[69] V. V. Belloni, V. Sabonis, P. Di Trapani, and O. Jedrkiewicz, "Burst mode versus
single-pulse machining for Bessel beam micro-drilling of thin glass: study and
comparison," SN Applied Sciences, vol. 2, no. 9, 2020, doi: 10.1007/s42452-020-
03327-4.
[70] V. V. Belloni, M. Bollani, S. M. Eaton, P. Di Trapani, and O. Jedrkiewicz, "MicroHole Generation by High-Energy Pulsed Bessel Beams in Different Transparent
Materials," Micromachines (Basel), vol. 12, no. 4, Apr 18 2021, doi:
10.3390/mi12040455.
[71] P. Gečys, "Nanosecond Laser Processing of Soda-Lime Glass," Journal of Laser
Micro/Nanoengineering, vol. 10, no. 3, pp. 254-258, 2015, doi:
10.2961/jlmn.2015.03.0003.
[72] G. Lott, N. Falletto, P.-J. Devilder, and R. Kling, "Optimizing the processing of
sapphire with ultrashort laser pulses," Journal of Laser Applications, vol. 28, no. 2,
2016, doi: 10.2351/1.4944509.
[73] Y. M. Lu, Y. Z. Duan, X. Q. Liu, Q. D. Chen, and H. B. Sun, "High-quality rapid laser
drilling of transparent hard materials," Opt Lett, vol. 47, no. 4, pp. 921-924, Feb 15
2022, doi: 10.1364/OL.452530.
[74] I. S. P. O. Corp., "Quartz crystalline (SiO2)window transmission curves," 2023.
[Online]. Available: https://www.lakeshore.com/products/productdetail/janis/accessories-and-ancillary-equipment/window-transmission-curves
[75] M. D. Shirk and P. A. Molian, "A review of ultrashort pulsed laser ablation of
materials," Journal of Laser Applications, vol. 10, no. 1, pp. 18-28, 1998, doi:
10.2351/1.521827.
[76] F. Tran and P. Blaha, "Accurate band gaps of semiconductors and insulators with a
semilocal exchange-correlation potential," Phys Rev Lett, vol. 102, no. 22, p. 226401,
Jun 5 2009, doi: 10.1103/PhysRevLett.102.226401.
[77] a. p. o. author, Ed. 12th Physical std. 2019. [Online]. Available:
https://www.brainkart.com/article/Energy-band-diagram-of-solids_41539/.
[78] P. P. Pronko, S. K. Dutta, and J. Squier, "Machining of sub-micron holes using a
femtosecond laser," Optics Communications, 1995.
[79] S. Breuer and F. R. Schilling, "Anisotropic thermal transport properties of quartz: from
−120 °C through the α–β phase transition," European Journal of Mineralogy, vol. 33,
no. 1, pp. 23-38, 2021, doi: 10.5194/ejm-33-23-2021.
[80] R. L. Harzic, N. Huot, and E. Audouard, "Comparison of heat-affected zones due to
nanosecond and femtosecond laser pulses using transmission electronic microscopy,"
APPLIED PHYSICS LETTERS, 2002, doi: 10.1063/1.1481195.
[81] Z. Ou, M. Huang, and F. Zhao, "The fluence threshold of femtosecond laser
blackening of metals: The effect of laser-induced ripples," Optics & Laser Technology,
vol. 79, pp. 79-87, 2016, doi: 10.1016/j.optlastec.2015.11.018.
[82] A. Luft, U. Franz, A. Emsermann, and J. Kaspar, "A study of thermal and mechanical
effects on materials induced by pulsed laser drilling " Applied Physics A: Materials
Science and Processing, 1996.
[83] M. M. Wood, "Empirical evaluation of fracture toughness: the toughness of quartz,"
American Mineralogist, 1982.
[84] J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, and M. Hong, "Laser hybrid micro/nanostructuring of Si surfaces in air and its applications for SERS detection," Sci Rep, vol.
4, p. 6657, Oct 17 2014, doi: 10.1038/srep06657.
[85] J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, "The role of plasma shielding in
collinear double-pulse femtosecond laser-induced breakdown spectroscopy,"
Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 97, pp. 34-41, 2014, doi:
10.1016/j.sab.2014.04.007.
[86] K. Mishchik et al., "Ultrafast laser induced electronic and structural modifications in
bulk fused silica," Journal of Applied Physics, vol. 114, no. 13, 2013, doi:
10.1063/1.4822313.
[87] D. Ashkenasi and A. Lemke, "Picosecond laser-induced color centers in glass optics,"
Journal of Laser Applications, vol. 23, no. 1, 2011, doi: 10.2351/1.3558996.
[88] L. Skuja et al., "Laser-induced color centers in silica," presented at the Laser-Induced
Damage in Optical Materials: 2000, 2001.
[89] Z. Sun, M. Lenzner, and W. Rudolph, "Generic incubation law for laser damage and
ablation thresholds," Journal of Applied Physics, vol. 117, no. 7, 2015, doi:
10.1063/1.4913282.
[90] R. W. WARD, "THE CONSTANTS OF ALPHA QUARTZ," 38th Annual Frequency
Control Symposium, 1984.
[91] L. A. J. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson,
"Bonding in alpha-quartz (SiO2): A view of the unoccupied states," American
Mineralogist, vol. 85, no. 5-6, pp. 732-738, 2000, doi: 10.2138/am-2000-5-611.
[92] X. Sun, J. Zheng, C. Liang, Y. Hu, H. Zhong, and J. a. Duan, "Improvement of rear
damage of thin fused silica by liquid-assisted femtosecond laser cutting," Applied
Physics A, vol. 125, no. 7, 2019, doi: 10.1007/s00339-019-2754-y.
[93] J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, "Femtosecond laser
ablation of silicon–modification thresholds and morphology," Applied Physics A, vol.
74, no. 1, pp. 19-25, 2014, doi: 10.1007/s003390100893.
[94] M. Klinger, "crysTBox-Crystallographic Toolbox," Institute of Physics of the Czech
Academy of Sciences, 2015.
[95] L. Ji, Y. Hu, J. Li, W. Wang, and Y. Jiang, "High-precision micro-through-hole array in
quartz glass machined by infrared picosecond laser," Applied Physics A, vol. 121, no.
3, pp. 1163-1169, 2015, doi: 10.1007/s00339-015-9482-8.
[96] K. L. Wlodarczyk, A. Brunton, P. Rumsby, and D. P. Hand, "Picosecond laser cutting
and drilling of thin flex glass," Optics and Lasers in Engineering, vol. 78, pp. 64-74,
2016, doi: 10.1016/j.optlaseng.2015.10.001.
[97] U. Klotzbach, K. Washio, C. B. Arnold, K. Stolberg, and S. Friedel, "Zero degree
contour cutting below 100 μm feature size with femtosecond laser," presented at the
Laser-based Micro- and Nanoprocessing X, 2016.
[98] G. Mincuzzi, M. Faucon, and R. Kling, "Novel approaches in zero taper, fast drilling
of thick metallic parts by ultra-short pulse laser," Optics and Lasers in Engineering,
vol. 118, pp. 52-57, 2019, doi: 10.1016/j.optlaseng.2019.03.004.
[99] H. Liu, Y. Li, W. Lin, and M. Hong, "High-aspect-ratio crack-free microstructures
fabrication on sapphire by femtosecond laser ablation," Optics & Laser Technology,
vol. 132, 2020, doi: 10.1016/j.optlastec.2020.106472.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2023-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明