博碩士論文 110327030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.236.142.143
姓名 鄭日威(Jih-Wei Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 一種應用於鑄造金屬表面瑕疵的自動光學檢測技術探討
相關論文
★ 輝度與色彩均勻化之發光二極體直下式背光模組應用設計★ 薄型化LCD直下式背光模組設計
★ 非對稱型光分佈的發光二極體照明裝置之研究★ 應用平行光互連技術於40Gb/s的光收發次模組之封裝技術
★ 大尺寸發光二極體側光式背光模組散熱技術★ 灰化製程對鉻及氧化銦錫接觸阻抗之影響
★ 導光式發光框條的光學設計與驗證★ 直下式LED液晶觸控顯示器之研究
★ 全周光裝飾型LED燈泡之研究★ 卷對卷技術應用於凹形微透鏡膜製造之分析
★ 複合式多波長驗鈔裝置探討★ 液晶顯示器品質提升之研究
★ 在微影製程中旋轉塗佈實驗之正型光阻減量的研究★ 一種應用於特定工程圖表影像的文字智慧辨識與提取之技術研究
★ 寬頻光方向耦合器使用數種權重函數之結構最佳化設計★ 線上近紅外線穿透光檢測系統應用於不織布製程設備之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-15以後開放)
摘要(中) 本研究建立一套鑄造金屬表面瑕疵的自動光學檢測系統,藉由鑄造金屬高爾夫球桿頭一號桿的表面瑕疵進行研究,表面瑕疵包括反應氣孔、卷氣氣孔、脫皮、縮孔、凸點等五種主要瑕疵。首先,將桿頭表面依據不同曲率角度劃分21個區域,設計各區域最佳的取像角度和一套影像拍攝流程,我們的影像拍攝流程包括在左、右側的單側光源下進行照明,配合旋轉平台的旋轉角度調整以及升降平台的上下移動,使CCD能適應不同區域表面的曲率,拍攝出瑕疵特徵最明顯且最小瑕疵在6像素值以上的影像。再來利用LabVIEW來做瑕疵檢測影像處理流程的工具,透過四大步驟階段影像處理流程來達到瑕疵檢測。第一步使用開放運算來初步去除圖像中金屬上的噪點和黑點,第二步透過灰階標準差校正的方法,成功克服了影像中由於對比度變化提升瑕疵特徵而導致的亮度不均勻問題,將灰階標準差為45以上的原圖,降低至22~23之間。第三步,使用拉普拉斯濾波器消除背景雜訊並且銳化瑕疵特徵。第四步,採用了二值化分割技術,有效地將瑕疵從背景中分離出來,並利用形態學中的閉合運算,將影像中瑕疵特徵進行修補與強化,同時使用粒子濾波器將過篩率從2.74%降至1.8%。最後利用Matlab程式將劃分的不同拍攝區域的影像進行合併,將瑕疵的位置標示在一個平面坐標系統上,提供了更容易理解的視覺位置。
本研究針對每一個桿頭樣本提取了21張影像,總共有5個樣本桿頭,因此提取了105張影像,自動光學瑕疵檢測系統總共檢測到了944個瑕疵,在將辨識結果與人眼檢測結果進行比對之後,漏篩的瑕疵數量為0個,表示我們的瑕疵檢測系統成功辨識了所有人眼辨識的瑕疵,過篩的瑕疵數量為17個,過篩率為1.8%,檢測成功率為98.2%,證實此自動光學檢測系統能有效對鑄造金屬表面瑕疵進行檢測。
摘要(英) This study develops an automatic optical detection system for cast metal surface flaws and investigates surface defects on the cast metal golf club head. Surface defects include reaction pores, air entrainment pores, peeling, shrinkage holes, lumps, and so on. Five main flaws. First, the club head′s surface is separated into 21 parts based on different curvature angles, the best imaging angles for each area are determined, and an image shooting technique is developed. Our image-capturing approach incorporates unilateral light sources on the left and right sides. Illumination, combined with the adjustment of the rotation angle of the rotating platform and the up and down movement of the lifting platform, allows the CCD to adapt to the curvature of the surface in different areas and capture images with the most obvious defect features as well as the smallest defect above 6 pixels. Next, use LabVIEW as a tool for image processing to find defects using a four-step procedure. The first phase involves using open operations to eliminate the noise and dark spots on the metal in the image. The second stage employs the grayscale standard deviation correction approach to successfully overcome the uneven brightness problem in the image produced by contrast variations that accentuate fault features, decreasing the original image with a grayscale standard deviation of over 45 to between 22 and 23. The third step involves using the Laplacian filter to reduce background noise and sharpen fault details. The fourth phase employs binary segmentation technology to successfully distinguish faults from the background, followed by the closure operation in morphology to fix and enhance the image′s defect features. At the same time, particle filters are utilized to minimize the screening frequency. decreased from 2.74% to 1.8%. Finally, the Matlab application is used to combine photos from several shooting regions and identify the location of the defect on a plane coordinate system, resulting in a more intelligible visual position.
This investigation obtained 21 pictures for each club head sample. There were 5 sample club heads in all, therefore 105 pictures were obtained. The automatic optical defect detection system identified 944 faults. The identification findings were compared to human eye detection results. After comparison, the number of faults overlooked by the screen was zero, indicating that our defect detection method correctly identified all errors seen by the human eye. There were 17 faults examined, with a 1.8% screening rate and a 98.2% detection success rate. It has been confirmed that our automatic optical inspection system can successfully detect faults on the surface of cast metal.
關鍵字(中) ★ 自動光學瑕疵檢測系統
★ 形態學
★ 灰階標準差校正
★ 二值化分割
關鍵字(英) ★ Automated Optical Inspection System
★ Morphology
★ Grayscale Standard Deviation Correction
★ Thresholding
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章、緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 3
1-2-1 鑄造金屬表面瑕疵AOI系統 4
1-2-2 濾波器影像處理 5
1-2-3 影像分割處理 7
1-3 研究目的 10
1-4 研究方法 11
1-5 論文架構 12
第二章、基本理論 13
2-1 瑕疵分類 14
2-2 可檢測最小瑕疵 15
2-3 桿頭表面特性分析 15
2-4 光源 18
2-5 照光技術 19
2-6 影像演算方法 21
2-6-1 灰階影像 21
2-6-2 形態學(Morphology) 22
2-6-3 膨脹(Dilation) 22
2-6-4 侵蝕(Erosion) 23
2-6-5 開放(Open) 24
2-6-6 閉合(Close) 24
2-7 空間區域濾波器 25
2-7-1 高通率波器 27
2-7-2 拉普拉斯濾波器 27
2-8 二值化 28
第三章、拍攝系統硬體架構 29
3-1 相機與鏡頭 29
3-2 光源選用 31
3-2-1 照光方式 32
3-2-2 旋轉與升降平台 34
3-3 拍攝系統硬體架構 38
第四章、瑕疵檢測系統設計與驗證 41
4-1 LabVIEW軟體介紹 41
4-2 影像拍攝流程 42
4-3 瑕疵檢測流程 43
4-3-1 設定取像範圍 44
4-3-2 形態學開放運算 45
4-3-3 灰階標準差較正 47
4-3-4 拉普拉斯濾波器處理 49
4-4 瑕疵影像分割 62
4-4-1 二值化門檻值 62
4-4-2 閉合運算 62
4-4-3 粒子過濾器 63
4-5 二值化結果 64
4-6 瑕疵位置標記 65
4-6-1 座標數值相對化 65
4-6-2 瑕疵平面分布圖 67
4-6-3 大型瑕疵篩選 68
4-7 辨識結果分析 70
第五章、結論與未來展望 74
5-1 結論 74
5-2 未來展望 75
第六章、參考文獻 76
參考文獻 [1] Liao, H. C., Lim, Z. Y., Hu, Y. X., & Tseng, H. W. (2018). Guidelines of automated optical inspection (AOI) system development. In 2018 IEEE 3rd International Conference on Signal and Image Processing, pp.362-366.
[2] Lehr, J., Sargsyan, A., Pape, M., Philipps, J., & Krüger, J. (2020). Automated optical inspection using anomaly detection and unsupervised defect clustering. In 2020 25th IEEE international conference on emerging technologies and factory automation (etfa), pp.1235-1238.
[3] 「全球 AOI 技術的市場規模」,檢自:https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=16&SiteID=1&MmmID=103646123471
7610054
[4] Mike,S.(2021).Golf′s surge in popularity in 2020 was even better than predicted.,檢自:https://www.golfdigest.com/story/national-golf-foundation-reports-numbers-for-2020-were-record-se
[5] 維基百科,可見光,檢自:https://zh.wikipedia.org/zh-tw/可見光
[6] Luo, Q., Fang, X., Liu, L., Yang, C. and Sun, Y. (2020).Automated Visual Defect Detection for Flat Steel Surface: A Survey," in IEEE Transactions on Instrumentation and Measurement, pp. 626-644.
[7] Aiger, D., & Talbot, H. (2010). The phase only transform for unsupervised surface defect detection. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition , pp.295-302.
[8] Xie, S., Shan, S., Chen, X., & Chen, J. (2010). Fusing local patterns of gabor magnitude and phase for face recognition. IEEE transactions on image processing, pp.1349-1361.
[9] Gayubo, F., Gonzalez, J. L., de la Fuente, E., Miguel, F., & Perán, J. R. (2006). On-line machine vision system for detect split defects in sheet-metal forming processes. In 18th International Conference on Pattern Recognition, pp.723-726.
[10] Mansano, M., Pavesi, L., Oliveira, L. S., Britto, A., & Koerich, A. (2011). Inspection of metallic surfaces using local binary patterns. In IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society , pp.2227-2231.
[11] Riaz, F., Kamal, K., Zafar, T., & Qayyum, R. (2017). An inspection approach for casting defects detection using image segmentation. In 2017 International Conference on Mechanical, System and Control Engineering, pp.101-105.
[12] Dobrzański, L. A., Krupiński, M., Sokolowski, J. H., Zarychta, P., & Włodarczyk-Fligier, A. (2006). Methodology of analysis of casting defects. Journal of Achievements in Materials and Manufacturing Engineering, pp. 267-270.
[13] Lin, J., Wen, K., Liu, Y., & Zhang, X. (2021). Recognition and classification of surface defects of aluminum castings based on machine vision. In 2021 International Conference on Machine Learning and Intelligent Systems Engineering, pp.10-15.
[14] Li, D. R., Wang, M., Pan, J.(2006).Auto-dodging processing and its application for optical RS images., Geomatics and Information Science of Wauhan University, pp.753-756.
[15] Sun, M.(2009). Research on Key technology of Automatical and Fast DOM Generation. Wuhan:Wuhan University.
[16] Zhang, Z., Zou, S.(2011). An improved algorithm of mask images dodging for aerial image. In MIPPR 2011:Remote Sensing Image Processing, Geographic Information Systems, and Other Applications(Vol. 8006, p. 80060S). International Society for Optics and Photonics.
[17] 王偉仁(2018),自動化光學檢測於梭織物瑕疵辨識分類與應用,國立台灣科技大學材料科學與工程碩士學位論文。
[18] Li, Z., Zhang, J., Zhuang, T., & Wang, Q. (2018). Metal surface defect detection based on MATLAB. Paper presented at the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC).
[19] 施祈安 (2021),應用機器視覺與深度學習於鋼珠表面之瑕疵檢測,國立臺北科技大學工業工程與管理系碩士學位論文。
[20] 古軒龍(2021),鋁管表面處理之瑕疵檢測,國立雲林科技大學電機工程系碩士學位論文。
[21] 火種源科技股份有限公司-鑄造缺陷,檢自:https://www.allspark.com.tw/custom_43440.html
[22] 范光照、廖偉博、陳智遠、陳守恒、周睿程 (2009),直筒型粉末冶金件之自動光學檢測。粉末冶金會刊,117-124頁。
[23] 維基百科,灰階影像,檢自:https://zh.wikipedia.org/zh-tw/灰階影像
[24] 教育學習網。「形態學」,檢自:
https://steam.oxxostudio.tw/category/python/ai/opencv-erosion-dilation.html
[25] 教育學習網。「形態學」,檢自:https://steam.oxxostudio.tw/category/python/ai/opencv-erosion-dilation.html
[26] 維基百科,「拉普拉斯算式」,檢自:https://zh.wikipedia.org/zh-tw/拉普拉斯算子
[27] The Imageing Source DMK23U445 規格表,檢自:https://s1-dl.theimagingsource.com/api/2.5/packages/documentation/factsheet-single/fsdmk23u445/63cf0edf-c814-5830-98df-66ba8c81dd61/fsdmk23u445.zh_TW.pdf
[28] Edmund Optics C-Mount 2/3″ 25mm f/1.4規格表,檢自:https://www.edmundoptics.com.tw/p/25mm-f14-ci-series-fixed-focal-length-lens/28275/
[29] 林帛羿(2020),基於深度學習之金屬表面瑕疵檢測系統的影像資料評估方法,國立臺北科技大學自動化科技所碩士學位論文。
[30] 吳奕廷(2021),結合影像處理與機械手臂於汽車輪圈瑕疵檢測應用 ,國立雲林科技大學電機工程系碩士學位論文。
[31] 范光照、廖偉博、陳智遠、陳守恒、周睿程 (2009)。直筒型粉末冶金件之自動光學檢測。粉末冶金刊,117-124頁。
[32] 小型旋轉平台規格圖,檢自:https://www.unice-eo.com/product/光機械元件/手動精密角度調整平台/小型旋轉平台
[33] Capra,A., Castrorina, A., Corchs, S., Gasparini, F., Schettini,R.(2006).Dynamic range optimization by local contrast correction and histogram image analysis, Digest of Technical Papers International Conference on Consumer Electronics, pp.309-310.
[34] 曾炫皓(2013),空間變異之適應性參數的gamma校正運用於高曝光與低曝光影像之研究 ,國立勤益科技大學資訊工程系碩士學位論文。
[35] 劉彥錚(2013),應用多重特徵於提升材質辨識的準確性,國立交通大學電控工程系碩士學位論文。
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2024-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明